

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

A classification of cubic one-regular graphs

A classification of cubic one-regular graphs

Mohsen Ghasemi^{*} Urmia University

Abstract

A graph is *one-regular* if its automorphism group acts regularly on the set of its arcs. In this talk, we classify cubic one-regular graphs of order $2p^2q$.

Keywords: One-regular graphs, Symmetric graphs, Cayley graphs. Mathematics Subject Classification [2010]: 05C25, 20B25

1 Introduction

Throughout this paper we consider undirected finite connected graphs without loops or multiple edges. For a graph X we use V(X), E(X) and $\operatorname{Aut}(X)$ to denote its vertex set, edge set and its full automorphism group, respectively. An *s*-arc in a graph is an ordered (s+1)-tuple $(v_0, v_1, \dots, v_{s-1}, v_s)$ of vertices of the graph such that v_{i-1} is adjacent to v_i for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$. By an *n*-cycle we shall always mean a cycle with *n* vertices. Also girth is the length of shortest cycle. For a subgroup $G \leq Aut(X)$, a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if G acts transitively or regularly on the set of *s*-arcs of X, respectively. In the special case graph is one-regular if its automorphism group acts regularly on the set of its arcs.

Proposition 1.1. Let $p \ge 7$ be a prime and X a cubic symmetric graph of order 2p. Then X is a one-regular normal Cayley graph on the dihedral group D_{2p} .

Proposition 1.2. Let X be a connected cubic symmetric graph and let G be a s-regular subgroup of Aut(X). Then the stabilizer G_v of $v \in V(X)$ in G is isomorphic to $\mathbb{Z}_3, S_3, S_3 \times \mathbb{Z}_2, S_4$ or $S_4 \times \mathbb{Z}_2$ for s = 1, 2, 3, 4 or 5, respectively.

Proposition 1.3. $N_{Aut(X)}(R(G)) = R(G) \rtimes Aut(G, S).$

Proposition 1.4. Let G be a finite group and let Q be an abelian Sylow subgroup contained in the center of its normalizer. Then Q has a normal complement K (indeed, K is even a characteristic subgroup of G).

Proposition 1.5. The quotient group $N_G(H)/C_G(H)$ is isomorphic to a subgroup of the automorphism group Aut(H) of H.

^{*}Speaker