$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University
pp.: 1-4

A classification of cubic one-regular graphs

Mohsen Ghasemi*
Urmia University

Abstract

A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this talk, we classify cubic one-regular graphs of order $2 p^{2} q$.

Keywords: One-regular graphs, Symmetric graphs, Cayley graphs.
Mathematics Subject Classification [2010]: 05C25, 20B25

1 Introduction

Throughout this paper we consider undirected finite connected graphs without loops or multiple edges. For a graph X we use $V(X), E(X)$ and $\operatorname{Aut}(X)$ to denote its vertex set, edge set and its full automorphism group, respectively. An s-arc in a graph is an ordered $(s+1)$-tuple ($v_{0}, v_{1}, \cdots, v_{s-1}, v_{s}$) of vertices of the graph such that v_{i-1} is adjacent to v_{i} for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s-1$. By an n-cycle we shall always mean a cycle with n vertices. Also girth is the length of shortest cycle. For a subgroup $G \leq \operatorname{Aut}(X)$, a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if G acts transitively or regularly on the set of s-arcs of X, respectively. In the special case graph is one-regular if its automorphism group acts regularly on the set of its arcs.

Proposition 1.1. Let $p \geq 7$ be a prime and X a cubic symmetric graph of order $2 p$. Then X is a one-regular normal Cayley graph on the dihedral group $D_{2 p}$.

Proposition 1.2. Let X be a connected cubic symmetric graph and let G be a s-regular subgroup of $\operatorname{Aut}(X)$. Then the stabilizer G_{v} of $v \in V(X)$ in G is isomorphic to $\mathbb{Z}_{3}, S_{3}, S_{3} \times$ \mathbb{Z}_{2}, S_{4} or $S_{4} \times \mathbb{Z}_{2}$ for $s=1,2,3,4$ or 5 , respectively.

Proposition 1.3. $N_{\operatorname{Aut}(X)}(R(G))=R(G) \rtimes \operatorname{Aut}(G, S)$.
Proposition 1.4. Let G be a finite group and let Q be an abelian Sylow subgroup contained in the center of its normalizer. Then Q has a normal complement K (indeed, K is even a characteristic subgroup of G).

Proposition 1.5. The quotient group $N_{G}(H) / C_{G}(H)$ is isomorphic to a subgroup of the automorphism group $\operatorname{Aut}(H)$ of H.

[^0]
[^0]: *Speaker

