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Abstract

This paper presents a new semi-analytic numerical method for solving multi-order
fractional differential equations. The method is based on the use of the particular
solutions of the linearized equation. Numerical implementation confirms the validity,
efficiency and applicability of the method.
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1 Introduction

Fractional differential equations have been found to be effective to describe some physical
phenomenas. In this paper, the method of particular solutions is applied to solve the
multi-order fractional differential equation:

Dαu(t) = f(t, u(t), Dβ1u(t), . . . , Dβnu(t)) = 0, u(k)(0) = ck, k = 0, . . . ,m, (1)

where m < α ≤ m + 1, 0 < β1 < β2 < . . . < βn < α and Dα denotes Caputo fractional
derivative of order α. It should be noted that f can be non linear in general. In Daftardar-
Gejji and Jafari [1], it was proved that the Eq.(1) can be represented as a system of
fractional differential equations (FDEs)

Dαiui(t) = ui+1, i = 1, 2, . . . , n− 1,

Dαnui(t) = f(t, u1, u2, . . . , un);

uki (0) = cik, 0 ≤ k ≤ mi, mi ≤ αi ≤ mi + 1, 1 ≤ i ≤ n. (2)

For more details we refer to [3].
In Section 2, we describe the particular solution method for the solution of multi-point

boundary value problems (MPBVPs) and then we present this method to solve multi-order
fractional differential equations. A numerical example illustrating the applicability of the
method is placed in Section 3.
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