

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

A note on the graph of equivalence classes of zero divisors of a ring

A note on the graph of equivalence classes of zero divisors of a ring

Hamid Reza Dorbidi* University of Jiroft Zahra Abyar Payam Noor University(Ardakan)

Abstract

In this paper we study the graph of equivalence classes of zero divisors of a ring R, denoted by $\Gamma_E(R)$. We give some necessary conditions for finiteness of $\Gamma_E(R)$.

Keywords: Zero divisor, Annihilator, Associated prime Mathematics Subject Classification [2010]: 13A15, 13A99, 05C12

1 Introduction

The graph of equivalence classes of zero divisors of a ring R, denoted by $\Gamma_E(R)$, is defined in [7] and studied in [4]. Let Z(R) denotes the set of zero divisors of a ring R and $Z(R)^* = Z(R) \setminus \{0\}$. Define an equivalence relation \sim on Z(R) as follows[5]: $x \sim y$ if and only if Ann(x) = Ann(y). $\Gamma_E(R)$ is a graph associated to R whose vertices are the classes of elements in $Z(R)^*$, and two distinct classes $[x] \neq [y]$ are joined by an edge if and only if xy = 0. Another interpretation of $\Gamma_E(R)$ is as follows: The vertices are the elements of $\{ann(a) : a \in Z(R)^*\}$ and two distinct elements Ann(x) and Ann(y) are adjacent if and only if xy = 0.

First we recall some facts and notations related to this paper. Throughout this paper R denotes a commutative ring with unit element. For any ideal I, $Ann(I) = \{r \in R : ri = 0 \forall i \in I\}$ is called an annihilator ideal. We say R satisfies ACC(Ann) if every chain in the set of annihilator ideals has a maximal element. If R is a subring of a Noetherian ring then R satisfies ACC(Ann). A prime ideal P is called an associated prime ideal if P = Ann(x) for some $x \in Z(R)^*$. The set of associated prime ideals of R is denoted by Ass(R). Also a vertex [x] of $\Gamma_E(R)$ is called associated prime if $Ann(x) \in Ass(R)$.

Let Γ be a simple graph. The *degree* of $v \in V(\Gamma)$ denoted by d(v). The set of vertices which are adjacent to v is denoted by $N_{\Gamma}(v)$. A complete subgraph of Γ is called a clique. The *clique number* of Γ , denoted by $\omega(\Gamma)$, is suprimum of size of cliques. A subset S of V is called a dominating set if every vertex in $V \setminus S$ has a neighbor in S. The minimum size of the dominating sets is called domination number and is denoted by $\gamma(\Gamma)$.

In [4] and [7] the ring R is Noetherian. In this paper we show that many results are true without Noetherian condition or true with a weaker condition.

^{*}Speaker