

$46^{\rm th}$ Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Talk

Some fixed point results for the sum of two mappings

pp.: 1–3

Some fixed point results for the sum of two mappings

Roholla Keshavarzi*

Ali Jabbari

Shahid Bahonar University of Kerman

Shahid Bahonar University of Kerman

Abstract

In this paper, we obtain some new fixed point theorems for the sum of two weakly sequentialy continuous mappings T_1 and T_2 on an L-embedded convex subset C in a Banach space X, in which $T_1:C\to X$ is nonexpansive and $T_2:C\to X$ is continuous with $T_2(C)$ being contained in a compact set. As a result, we derive fixed point theorems on weak* compact convex subsets of the continuous dual X^* of an M-embedded Banach space X.

Keywords: nonexpansive, fixed point, L-embedded, M-embedded, weakly sequentially continuous

Mathematics Subject Classification [2010]: 37C25,46B25

1 Introduction

Let X be a Banach space and C be a subset of X. A mapping $T: C \to X$ is called nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. A point $x \in X$ is called a fixed point of T, if Tx = x. A mapping $T: C \to X$ is called compact continuous if T is compact and continuous on C. In [4] O'Regan studied the fixed points of the sum of a nonexpansive mapping with a compact continuous on a weakly compact subset C of Xand in [2] and [3] Krasnoselskii combined two well-known fixed point theorems (Schauder's fixed point Theorem and the contraction mapping principle) to gain the fixed points of the sum of two mappings T_1 and T_2 on a closed convex subset C in a Banach space X, in which $T_1: C \to X$ is a contraction and $T_2: C \to X$ is continuous with $T_2(C)$ being contained in a compact set. In this paper, among other things we study the fixed point of the sum of two such mapings on an L-embedded convex subset of X allowing T_1 to be a nonexpansive mapping instead of a contraction (Theorem 2.2). In [1], Lau and Zhang called a nonempty subset C of a Banach space X, L-embedded if there is a subspace X_s of X^{**} such that $X + X_s = X \oplus_1 X_s$ in X^{**} and $\overline{C}^{w^*} \subset C \oplus_1 X_s$. That is, for each $x \in \overline{C}^{w^*}$ there are $c \in C$ and $\xi \in X_s$ such that $x = c + \xi$ and $||x|| = ||c|| + ||\xi||$. As remarked in the same paper, (by taking $X_s = 0$) it is readily seen that every L-embedded subset C of a Banach space X is weak*-closed and hence closed. Also every weakly compact subset of Banach space is L-embedded, but not vice-versa, [1].

Next, we use our results to derive fixed point theorems on weak* compact convex subsets of the dual space X^* of an M-embedded Banach space X (Theorem 2.4). As in [5], a Banach space X is M-embedded if X is an M-ideal in its bidual X^{**} , i.e. $X^{\perp} = \{ \varphi \in X^{***} : \varphi(x) = 0 \text{ for all } x \in X \}$ is an l_1 -summand in X^{***} .

^{*}Speaker