

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Risk measure in a financial market

Risk measure in a financial market

Elham Dastranj University of Shahrood Faeze Shokri^{*} University of Shahrood

Abstract

In this paper we extend the definition of risk measure from L^{∞} to an arbitrary Polish space with special conditions. For this purpose we present a measure preserving transformation between two Polish spaces with special conditions.

Keywords: Polish space, Risk measure, Risk management, Transformation Mathematics Subject Classification [2010]: 60Hxx, 60Bxx, 60Gxx

1 Introduction

Risk management is a very important concept in financial mathematics and specially in a financial market.

For managing risk in a financial market we need to compute risk measure in a financial market which in [1, 2, 4, 5] is defined on \mathbb{L}^{∞} . In this paper we extend the definition of risk measure from \mathbb{L}^{∞} to an arbitrary uncountable Polish space. For this purpose we construct a measure preserving transformation between two Polish spaces which have special conditions.

2 Risk Measure

Risk measure is widely used as instrument to control risk. In fact risk measures assign a real number to a risk in a financial market. As usual in actuarial sciences we assume that X describes a potential loss, but we allow X to assume negative values. Let (Ω, \mathscr{F}, P) be a probability space and expectation of a random variable X with respect to P is denoted by E[X].

Definition 2.1. [2, 3] Let X be the set of all functions $f : \Omega \to \mathbb{R}$. A mapping $\rho : X \to \mathbb{R}$ is called a risk measure if it has the following conditions.

- Monotonicity: If $X \leq Y$ then $\rho(X) \leq \rho(Y)$;
- Translation invariance: if $m \in \mathbb{R}$, then $\rho(X + m) = \rho(X) + m$;
- Subadditivity: $\rho(X+Y) \le \rho(X) + \rho(Y);$
- Positive homogeneity: if $\lambda > 0$, then $\rho(\lambda X) = \lambda \rho(X)$;

^{*}Speaker