$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University

Real orthogonal eigenvalue decomposition of symmetric normal matrices

Elham Nobari
Mazandaran University of Science and Technology

Abstract

We propose an algorithm for eigenvalue decomposition of symmetric normal complex matrices via real orthogonal transformations. This algorithm answers positively to the open question which is raised in [M. Ferranti, R. Vandebril, Computing eigenvalues of normal matrices via complex symmetric matrices, J. Comput. Appl. Math., vol. 259, (2014), part A, 281-293].

Keywords: normal matrix, eigenvalue decomposition, real orthogonal transformation, common eigenvector.
Mathematics Subject Classification [2010]: 65F15, 65F30.

1 Introduction

There are various well-known methods for finding eigenpairs of complex matrices. Most of these methods are based on a two-step approach, first the original matrix is transformed to a unitary similar matrix of suitable shape, e.g. tridiagonal or Hessenberg matrix and then using standard methods like QR-methods, divide-and-conquer, etc. (see[3]) to compute the eigenvalue of a matrix. Though these two-step methods reduced the cost, but some of the properties of the original matrix can be neglected in these procedure. For example, when a symmetric normal matrix transformed to a tridiagonal matrix, the transformed matrix may not be normal anymore. In fact, a matrix is normal and symmetric if and only if it admits a real orthogonal eigenvalue decomposition [4], i.e. there are a real orthogonal matrix Q and a diagonal matrix Λ for a symmetric normal matrix A such that $A=Q \Lambda Q^{T}$. In this paper, we propose an algorithm for eigenvalue decomposition of any symmetric normal matrix A using only real orthogonal transformations.

Theorem 1.1. [?] Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{C}^{n}$ be given and $\|\boldsymbol{x}\|_{2}=\|\boldsymbol{y}\|_{2}>0$. If $\boldsymbol{x}=e^{i \theta} \boldsymbol{y}$ for some θ, let $U(\boldsymbol{x}, \boldsymbol{y})=e^{i \theta} I_{n}$; otherwise, let $\phi \in\left[0,2 \pi\right.$) be such that $\boldsymbol{y}^{*} \boldsymbol{x}=e^{i \phi}\left|\boldsymbol{y}^{*} \boldsymbol{x}\right|$ (take $\phi=0$ if $\boldsymbol{y}^{*} \boldsymbol{x}=0$), let $\omega=e^{i \phi} \boldsymbol{y}-\boldsymbol{x}$ and let $U(\boldsymbol{x}, \boldsymbol{y})=e^{i \phi} U_{\omega}$, in which $U_{\omega}=I-2\left(\omega^{*} \omega\right)^{-1} \omega \omega^{*}$ is a Housholder matrix. . Then U is unitary and $U(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{y}=\boldsymbol{x}$.

Theorem 1.2. [?] Let $A \in M_{n}(\mathbb{C})$ be partitioned as $A=\left[\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right]$, in which A_{11} and A_{22} are square. Then A is normal if and only if A_{11} and $\widehat{A_{22}}$ are normal and $A_{12}=0$.

Lemma 1.3. [?] Let $\mathcal{N} \subset M_{n}\left(\mathbb{C}^{n}\right)$ be a commuting family of matrices, then some nonzero vector in \mathbb{C}^{n} is an eigenvalue of every $A \in \mathcal{N}$.

