

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Phi-means of some Banach subspaces on a Banach algebra

φ -means of some Banach subspaces on a Banach algebra

Samaneh Javadi^{*} University of Guilan Faculty of Engineering- East Guilan Ali Ghaffari Semnan University

Abstract

In this paper, among the other things, we study the concept of φ -amenability of a Banach algebra A, where φ is a nonzero multiplicative linear functional on A. We present a few results in the theory of φ -amenable Banach algebras, and we obtain necessary and sufficient conditions for A^{**} to have a left invariant φ -mean on Banach subspaces of A^* . The candidates for the choice of space are A_* , WAP(A) and S(G).

Keywords: Banach algebra, φ -amenability, φ -means, weak* topology. **Mathematics Subject Classification [2010]:** 13D45, 39B42

1 Introduction

In [3], Lau introduced and investigated a large class of Banach algebras which he called Falgebras. Later, F-algebras were termed Lau algebras. They are Banach algebras A such that the dual A^* is a von Neumann algebra and the identity of A^* is a multiplicative linear functional on A. The concept of left amenability for a Lau algebra has been extensively extended for an arbitrary Banach algebra by introducing the notion of φ -amenability (see [2]). Let A be an arbitrary Banach algebra and φ a character of A, that is a homomorphism from A onto \mathbb{C} . A is called φ -amenable if there exists a bounded linear functional m on A^* satisfying $\langle m, \varphi \rangle = 1$ and $\langle m, f.a \rangle = \varphi(a) \langle m, f \rangle$ for all $a \in A$ and $f \in A^*$. This concept considerably generalizes the notion of left amenability for Lau algebras.

The main purpose of this paper is to investigate the φ -amenability for certain Banach subspaces of dual Banach algebras. We continue [1] in the study of amenability of a Banach algebra A defined with respect to a character φ of A. Various necessary and sufficient conditions are found for a Banach algebra to possess a left invariant φ -mean. Throughout the paper, $\Delta(A)$ will denote the set of all homomorphisms from A onto \mathbb{C} .

We prove that A^{**} has a left invariant φ -mean on A_* if and only if for every normal φ -bimodule E, every bounded weak^{*}-continuous derivation $D: A \to E$ is inner. Other results in this direction are also obtained. Our second purpose in this paper is to present several characterizations of the existence of a left (right) invariant φ -mean on Wap(A). Finally we obtain sufficient conditions and some necessary conditions about S(G) to have a left invariant 1-mean.

^{*}Speaker