

46^{th} Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Talk

Annihilator conditions in noncommutative ring extensions

pp.: 1-4

Annihilator Conditions in Noncommutative Ring Extensions

Abdollah Alhevaz*

Department of Mathematics, Faculty of Mathematical Sciences, University of Shahrood, P.O. Box: 316-3619995161, Shahrood, Iran.

Abstract

Let R be a ring, S a strictly ordered monoid and $\omega: S \to \operatorname{End}(R)$ a monoid homomorphism. In [4], Marks, Mazurek and Ziembowski study the class of (S,ω) -Armendariz rings, as a generalization of the standard Armendariz condition from ordinary polynomial ring to skew generalized power series ring. We observe from results in [4], that the upper nilradical coincides with the prime radical in (S,ω) -Armendariz rings and also every one-sided nil ideal of these rings is contained in a two-sided nil ideal of the ring, namely satisfies in the Köthe's conjecture. Also it can be shown that the factor rings of an (S,ω) -Armendariz rings over its prime radical is also (S,ω) -Armendariz. We continue in this paper the study of rings with such property in skew generalized power series rings and bring some properties of these rings.

Keywords: Lower nilradical, Nilpotent elements, Skew generalized power series ring. **Mathematics Subject Classification [2010]:** Primary 16N40, 20M25; Secondary 06F05.

1 Introduction

Throughout the present paper all rings considered, unless otherwise noted, shall be assumed to be associative and possess an identity; subrings of a ring need not have the same unit, subrng will denote a subring without unit, and "an order" on a set will always mean "a partial order". Our notation and terminology are standard and shall follow [3]. For instance, for such a ring R, the monoid of endomorphisms of R (with composition of endomorphisms as the operation) is denoted by $\operatorname{End}(R)$. We adopt the notations $\operatorname{Ni}\ell(R)$, $\operatorname{Ni}\ell_*(R)$ and $\operatorname{Ni}\ell^*(R)$ to represent the set of all nilpotent elements, the lower nilradical (i.e., the prime radical) and the upper nilradical (i.e., the sum of all nil ideals) of a ring R, respectively. By R[S], we mean the monoid ring of a monoid S over a ring R, while R[x] denotes the ring of all polynomials over a ring R.

Let (S, \leq) be an ordered set. Then (S, \leq) is called *artinian* if every strictly decreasing sequence of elements of S is finite and (S, \leq) is called *narrow* if every subset of pairwise order-incomparable elements of S is finite. An *ordered monoid* is a pair (S, \leq) consisting of a monoid S (written multiplicatively) and an order \leq on S such that for all $s_1, s_2, t \in S$, $s_1 \leq s_2$ implies $s_1t \leq s_2t$ and $ts_1 \leq ts_2$. An ordered monoid (S, \leq) is said to be *strictly*

^{*}Speaker