

46<sup>th</sup> Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University



A note on composition operators between weighted Hilbert spaces of ...

## A note on composition operators between weighted Hilbert spaces of analytic functions

Mostafa Hassanlou Shahid Bakeri High Education Center of Miandoab, Urmia University

> Morteza Sohrabi-Chegeni<sup>\*</sup> University of Tabriz

## Abstract

In this paper, we consider composition operators on weighted Hilbert spaces of analytic functions and observe that a formula for the essential norm, give a Hilbert-Schmidt characterization and characterize the membership in Schatten-class for these operators. Also, closed range composition operators are investigated.

 $\label{eq:keywords: composition operators, essential norm, Hilbert-Schmidt, Schatten-class, closed range$ 

Mathematics Subject Classification [2010]: 30H30, 46E40.

## 1 Introduction

Let  $\mathbb{D}$  denotes the open unit disk  $\{z \in \mathbb{C} : |z| < 1\}$  and  $\varphi$  be an analytic self map of  $\mathbb{D}$ . The composition operator  $C_{\varphi}$  induced by  $\varphi$  is defined  $C_{\varphi}f = f \circ \varphi$ , for any  $f \in H(\mathbb{D})$ , the space of all analytic functions on  $\mathbb{D}$ . This operator can be generalized to the weighted composition operator  $uC_{\varphi}$ ,  $uC_{\varphi}f(z) = u(z)f(\varphi(z))$ ,  $u \in H(\mathbb{D})$ . We consider a *weight* as a positive integrable function  $\omega \in C^2[0, 1)$  which is radial,  $\omega(z) = \omega(|z|)$ . The weighted Hilbert space of analytic functions  $\mathcal{H}_{\omega}$  consists of all analytic functions on  $\mathbb{D}$  such that

$$||f'||_{\omega}^2 = \int_{\mathbb{D}} |f'(z)|^2 \omega(z) \, dA(z) < \infty,$$

equipped with the norm  $||f||^2_{\mathcal{H}_{\omega}} = |f(0)|^2 + ||f'||^2_{\omega}$ . Here dA is the normalized area measure on  $\mathbb{D}$ . Also the weighted Bergman spaces defined by

$$\mathcal{A}^2_{\omega} = \left\{ f \in H(\mathbb{D}) : ||f||^2_{\omega} = \int_{\mathbb{D}} |f(z)|^2 \omega(z) \, dA(z) < \infty \right\}.$$

If  $f(z) = \sum_{n=0}^{\infty} a_n z^n$ , then  $f \in \mathcal{H}_{\omega}$  if and only if  $||f||^2_{\mathcal{H}_{\omega}} = \sum_{n=0}^{\infty} |a_n|^2 \omega_n < \infty$ , where  $\omega_0 = 1$  and for  $n \ge 1$ 

$$\omega_n = 2n^2 \int_0^1 r^{2n-1} \omega(r) dr,$$

<sup>\*</sup>Speaker