

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Open questions concerning Hindman's theorem

Open questions concerning Hindman's theorem

Amir Khamseh*

Department of mathematics, Kharazmi University

Abstract

Hindman's theorem states that for every coloring of \mathbb{N} with finitely many colors, there is an infinite set A such that the set of numbers which can be written as a sum of distinct elements of A is monochromatic. In this paper, we survey some interesting questions concerning this theorem.

Keywords: Reverse mathematics, Hindman's theorem, Ultrafilters Mathematics Subject Classification [2010]: 03B30, 05C55

1 Introduction

Let \mathbb{N} be the set of nonnegative integers. Given $X \subseteq \mathbb{N}$ let FS(X) be the set of all sums of finite nonempty subsets of X. Hindma's theorem is the following statement.

Theorem 1.1. (Hindman) If $\mathbb{N} = C_0 \cup \ldots \cup C_l$, then there exists an infinite set $X \subseteq \mathbb{N}$ such that $FS(X) \subseteq C_i$ for some $i \leq l$.

There are four proofs of Hindman's theorem:

- (1) The original combinatorial proof due to Hindman [6];
- (2) The simplified combinatorial proof due to Baumgartner [1];
- (3) The dynamical proof due to Furstenberg and weiss [2];
- (4) The ultrafilter proof due to Glazer [4].

The notion of an ultrafilter is a powerful tool in set theory, combinatorics and topology. We here give a short proof of Hindman's theorem using ultrafilters. For more details see [3]. An ultrafilter on a set X is a set of subsets $\mathcal{F} \subseteq \mathcal{P}(X)$ satisfying

1. $X \in \mathcal{F}$ and $\emptyset \notin \mathcal{F}$.

- 2. If $A \in \mathcal{F}$ and $B \in \mathcal{F}$ then $A \cap B \in \mathcal{F}$.
- 3. For all $A \subseteq X$, either $A \in \mathcal{F}$ or $A^c \in \mathcal{F}$.

Theorem 1.2. Let \mathcal{F} be an ultrafilter on a set X.

- 1. If B is such that $A \cap B \neq \emptyset$ for all $A \in \mathcal{F}$ then $B \in \mathcal{F}$.
- 2. If A and B are such that $A \cup B \in \mathcal{F}$ then at least one of $A, B \in \mathcal{F}$.

^{*}Speaker