

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Embedding locally inverse semigroups into Rees matrix semigroups

Embedding locally inverse semigroups into Rees matrix semigroups

Leila Nouri^{*} University of Sistan and Baluchestan, Zahedan, Iran

> Pouyan Khamechi University of Velayat, Iranshahr, Iran

Abstract

We give a necessary and sufficient condition for a locally inverse semigroup to be embeddable into a Rees matrix semigroup over a generalized inverse semigroup.

Keywords: Inverse semigroup, Rees matrix semigroup Mathematics Subject Classification [2010]: 20M10, 20M17

1 Introduction

For the standard notions and notation in semigroup theory the reader is referred to [1]. In particular the set of idempotents of a semigroup S will be denoted by E(S), the set of inverses of an element $s \in S$ by V(s). For nonempty subsets $H, K \subseteq S, HK$ denotes the usual product of subsets.

Definition 1.1. A regular semigroup is called locally inverse if the submonoid eSe is an inverse subsemigroup of S, for all $e \in E(S)$. If in addition E(S) is a subsemigroup of S, then S is called a generalized inverse semigroup. In this case E(S) is a normal band, i.e. an idempotent semigroup satisfying the equation xyzx = xzyx.

Definition 1.2. On a regular semigroup S, a partial order relation \leq is defined by $s \leq t$, if s = et = tf, for some $e, f \in E(S)$. It is called the natural partial order. A regular semigroup is locally inverse, if and only if the natural partial order is compatible with the multiplication.

Definition 1.3. An order ideal H of a regular semigroup S, is a nonempty subset H of S, such that $x \leq h$ implies $x \in H$, for all $h \in H$. For $s \in S$ we shall use the notation $[s] = \{x \in S : x \leq s\}$. In any locally inverse semigroup S the equality [s][t] = [st] holds, for all $s, t \in S$.

^{*}Speaker