

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Lie structure of smash products

Lie structure of smash products *

SALVATORE SICILIANO Università del Salento $\begin{array}{c} HAMID ~~USEFI^{\dagger} \\ Memorial ~~University ~~of ~~Newfound land \end{array}$

Abstract

We investigate the conditions under which the smash product of an (ordinary or restricted) enveloping algebra and a group algebra is Lie solvable or Lie nilpotent.

Keywords: smash products, enveloping algebras, group algebras, Lie solvable Mathematics Subject Classification [2010]: 17B60, 16S40, 16R40, 17B35

1 Introduction

Let A be an associative algebra over a field and regard A as a Lie algebra via the Lie product defined by [x, y] = xy - yx, for every $x, y \in A$. Then, A is said to be Lie solvable (respectively, Lie nilpotent) if it is solvable (nilpotent) as a Lie algebra. The Lie structure of associative algebras have been extensively studied over the years and considerable attention has been especially devoted to group algebras (see e.g. [2, 3, 5]) and restricted enveloping algebras (see e.g. [6, 7, 8, 9, 10]).

Let G be a group and \mathbb{F} a field. We denote by $\mathbb{F}G$ the group algebra of G over \mathbb{F} . We also denote by G' the derived subgroup of G. Passi, Passman and Sehgal established in [5] when $\mathbb{F}G$ is Lie solvable and Lie nilpotent.

Theorem 1.1 ([5]). Let $\mathbb{F}G$ be the group algebra of a group G over a field \mathbb{F} of characteristic $p \geq 0$. Then $\mathbb{F}G$ is Lie nilpotent if and only if one of the following conditions hold:

- 1. p = 0 and G is abelian;
- 2. p > 0, G is nilpotent and G' is a finite p-group;

Theorem 1.2 ([5]). Let $\mathbb{F}G$ be the group algebra of a group G over a field \mathbb{F} of characteristic $p \geq 0$. Then $\mathbb{F}G$ is Lie solvable if and only if one of the following conditions hold:

- 1. p = 0 and G is abelian;
- 2. p > 2 and G' is a finite p-group;

3. p = 2 and G has a subgroup N of index at most 2 such that N' is a finite 2-group.

^{*}Will be presented in English

[†]Speaker