$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University
pp.: 1-4

Existence results of three weak solutions for a two-point boundary value problem

Ghasem A. Afrouzi
University of Mazandaran

Saeid Shokooh*
University of Mazandaran and University of Gonbad Kavous

Abstract

we prove the existence of at least three weak solutions for one-dimensional fourthorder equations via two three critical points theorems.

Keywords: Dirichlet boundary condition, Variational methods, Critical points.
Mathematics Subject Classification [2010]: 34B15, 34B18, 58E05.

1 Introduction

In this note, we consider the following fourth-order boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime \prime} h\left(x, u^{\prime}\right)-u^{\prime \prime}=[\lambda f(x, u)+g(u)] h\left(x, u^{\prime}\right), \quad \text { in }(0,1), \tag{1}\\
u(0)=u(1)=0=u^{\prime \prime}(0)=u^{\prime \prime}(1),
\end{array}\right.
$$

where λ is a positive parameter, $f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is an L^{1}-Carathéodory function, $g: \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitz continuous function with the Lipschitz constant $L>0$, i.e.,

$$
\left|g\left(t_{1}\right)-g\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|
$$

for every $t_{1}, t_{2} \in \mathbb{R}$, with $g(0)=0$, and $h:[0,1] \times \mathbb{R} \rightarrow[0,+\infty)$ is a bounded and continuous function with $m:=\inf _{(x, t) \in[0,1] \times \mathbb{R}} h(x, t)>0$. Due to the importance of fourth-order two-point boundary value problems in describing a large class of elastic deflection, many researchers have studied the existence and multiplicity of solutions for such a problem, we refer the reader to $[1,4,5]$ and references therein. In the present paper, employing two three critical points theorems, we establish the existence three weak solutions for the problem (1). We say that a function $u \in H^{2}([0,1]) \cap H_{0}^{1}([0,1])$ is a weak solution of problem (1) if

$$
\begin{gathered}
\int_{0}^{1} u^{\prime \prime}(x) v^{\prime \prime}(x) d x+\int_{0}^{1}\left(\int_{0}^{u^{\prime}(x)} \frac{1}{h(x, \tau)} d \tau\right) v^{\prime}(x) d x-\lambda \int_{0}^{1} f(x, u(x)) v(x) d x \\
-\int_{0}^{1} g(u(x)) v(x) d x=0
\end{gathered}
$$

holds for all $v \in H^{2}([0,1]) \cap H_{0}^{1}([0,1])$.

[^0]
[^0]: *Speaker

