

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Some results on t-remotest points and t-approximate remotest points in ... pp.: 1–4

Some results on t-remotest points and t-approximate remotest points in fuzzy normed spaces

Marzieh Ahmadi Baseri * University of Yazd Hamid Mazaheri Yazd University

Abstract

In this paper, we define t-remotest points and t-approximate remotest points in fuzzy normed spaces and prove some theorems on theses concepts. In particular, we find t-remotest points and t-approximate remotest points by considering a cyclic map.

Keywords: t-remotest point, t-approximate remotest point, t-remotest fuzzy set. **Mathematics Subject Classification [2010]:** 13D45, 39B42

1 Introduction

The theory of fuzzy sets was introduced by L. Zadeh [7] in 1965. Many authors have introduced the concept of fuzzy metric in different ways ([1]-[7]). George and Veeramani ([3], [4]) modified the concept of fuzzy metric space intoduced by Kramosil and Michálek [5] and defined a Housdorff topology on this fuzzy metric space. In this paper we obtain the tremotest points and the t-approximate remotest points of the non-empty f-bounded subsets A and B of a fuzzy normed space (X, N, *), by considering a cyclic map $T : A \cup B \longrightarrow A \cup B$ i.e. $T(A) \subseteq B$ and $T(B) \subseteq A$.

First, we recall the basic definitions and preliminaries that is need for main results.

Definition 1.1. [3] A binary operation $*: [0,1] \times [0,1] \longrightarrow [0,1]$ is said to be continuous t-norm if ([0,1],*) is a topological monoid with unit 1 such that $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, and $a, b, c, d \in [0,1]$.

Definition 1.2. [6] The 3-tuple (X, N, *) is said to be a fuzzy normed space if X is a vector space, * is a continuous t-norm and N is a fuzzy set on $X \times (0, \infty)$ satisfying the following conditions for every $x, y \in X$ and t, s > 0,

$$\begin{split} &(i)N(x,t) > 0,\\ &(ii)N(x,t) = 1 \Leftrightarrow x = 0,\\ &(iii)N(\alpha x,t) = N(x,t/|\alpha|), \text{ for all } \alpha \neq 0,\\ &(iv)N(x,t) * N(y,s) \leq N(x+y,t+s),\\ &(v)N(x,.): (0,\infty) \longrightarrow [0,1] \text{ is continuous,}\\ &(vi)\lim_{t\to\infty} N(x,t) = 1. \end{split}$$

 $^{^{*}\}mathrm{Speaker}$