$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University
pp.: 1-4

Some results on t-remotest points and t-approximate remotest points in fuzzy normed spaces

Marzieh Ahmadi Baseri * Hamid Mazaheri
University of Yazd
Yazd University

Abstract

In this paper, we define t-remotest points and t-approximate remotest points in fuzzy normed spaces and prove some theorems on theses concepts. In particular, we find t-remotest points and t-approximate remotest points by considering a cyclic map.

Keywords: t-remotest point, t-approximate remotest point, t-remotest fuzzy set.
Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

The theory of fuzzy sets was introduced by L. Zadeh [7] in 1965. Many authors have introduced the concept of fuzzy metric in different ways ([1]-[7]). George and Veeramani ([3], [4]) modified the concept of fuzzy metric space intoduced by Kramosil and Michálek [5] and defined a Housdorff topology on this fuzzy metric space. In this paper we obtain the tremotest points and the t-approximate remotest points of the non-empty f-bounded subsets A and B of a fuzzy normed space ($X, N, *$), by considering a cyclic map $T: A \cup B \longrightarrow A \cup B$ i.e. $T(A) \subseteq B$ and $T(B) \subseteq A$.

First, we recall the basic definitions and preliminaries that is need for main results.
Definition 1.1. [3] A binary operation $*:[0,1] \times[0,1] \longrightarrow[0,1]$ is said to be continuous t-norm if $([0,1], *)$ is a topological monoid with unit 1 such that $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, and $a, b, c, d \in[0,1]$.

Definition 1.2. [6] The 3 -tuple $(X, N, *)$ is said to be a fuzzy normed space if X is a vector space, $*$ is a continuous t-norm and N is a fuzzy set on $X \times(0, \infty)$ satisfying the following conditions for every $x, y \in X$ and $t, s>0$,
(i) $N(x, t)>0$,
(ii) $N(x, t)=1 \Leftrightarrow x=0$,
(iii) $N(\alpha x, t)=N(x, t /|\alpha|)$, for all $\alpha \neq 0$,
(iv) $N(x, t) * N(y, s) \leq N(x+y, t+s)$,
$(v) N(x,):.(0, \infty) \longrightarrow[0,1]$ is continuous,
(vi) $\lim _{t \rightarrow \infty} N(x, t)=1$.

[^0]
[^0]: *Speaker

