

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Some sufficient conditions for subspace-hypercyclicity

Some Sufficient Conditions for Subspace-hypercyclicity

Mansooreh Moosapoor^{*} Farhangian University, Pardis Bentolhoda Sadr, Rasht, Iran.

Abstract

In this paper we state some sufficient conditions for an operator to be subspacehypercyclic. We also Costruct some interesting examples of subspace-hypercyclic operators with special properties.

Keywords: Subspace-hypercyclic operators, Subspace-mixing operators, Subspace-transitive operators.

Mathematics Subject Classification [2010]: 47A16, 47B37

1 Introduction

Recently Madore and Martinez-Avendano in [3] introduced the concept of subspacehypercyclicity for an operator as follows:

Definition 1.1. Let $T \in B(X)$ and let M be a closed subspace of X. We say that T is M-hypercyclic, if there exists $x \in X$ such that $orb(T, x) \cap M$ is dense in M. Such a vector x is called an M-hypercyclic vector for T.

Definition 1.2. Let $T \in B(X)$ and let M be a closed subspace of X. We say that T is M-transitive, if for any non-empty open sets $U \subseteq M$ and $V \subseteq M$, there exists $n \in N_0$ such that $T^{-n}(U) \cap V$ contains a relatively open nonempty subset of M.

Theorem 1.3. ([3])Let $T \in B(X)$ and let M be a nonzero closed subspace of X. If T is M-transitive, then T is M-hypercyclic.

It is proved in [3] by Madore and Martinez-Avendano that the converse of Theorem1.3 is not always true. So there are subspace-hypercyclic operators that are not subspace-transitive.

In [1], [2] and [5] one can find more results about subspace-hypercyclic operators.

In this paper we state some sufficient conditions for an operator to be subspacehypercyclic. Also we construct various examples of subspace-hypercyclic operators by using these conditions.

^{*}Speaker