

Infty-tuples of operators and Hereditarily

∞ -Tuples of operators and Hereditarily

 $\mathbf{Mezban}\ \mathbf{Habibi}^1$

Abstract

In this paper, we introduce for an ∞ -tuple of operators on common Ordered Banach space and some conditions to an ∞ -tuple to be Hereditary Hypercyclic infinity tuple. The supreme is taken over norm operator defined on the space.

Keywords: Hypercylicity, ∞-tuple, Hereditarily. Subject Classification [2010]: 37A25, 47B37.

1 Introduction

Let \mathcal{X} be an infinite dimensional Banach space and $T_1, T_2, ...$ are commutative bounded linear operators on \mathcal{X} . By an ∞ -tuple we mean the ∞ -component $\mathcal{T} = (T_1, T_2, ...)$. For the ∞ -tuple $\mathcal{T} = (T_1, T_2, ...)$ the set

$$\mathcal{F} = \bigcup_{n=1}^{\infty} \{ T_1^{k_1} T_2^{k_2} \dots T_n^{k_n} : k_i \ge 0, i = 1, 2, \dots, n, n \in \mathcal{N} \}$$

is the semigroup generated by \mathcal{T} . For $x \in \mathcal{X}$ take

$$Orb(\mathcal{T}, x) = \{Sx : S \in \mathcal{F}\}.$$

In other hand

$$Orb(\mathcal{T}, x) = \bigcup_{n=1}^{\infty} \{ T_1^{k_1} T_2^{k_2} \dots T_n^{k_n}(x) : k_i \ge 0, i = 1, 2, \dots n \}.$$

Definition 1.1 The set $Orb(\mathcal{T}, x)$ is called, orbit of vector x under \mathcal{T} and ∞ -Tuple $\mathcal{T} = (T_1, T_2, ...)$ is called hypercyclic ∞ -tuple, if there is a vector $x \in \mathcal{X}$ such that, the set $Orb(\mathcal{T}, x)$ is dense in \mathcal{X} , that is

$$\overline{Orb(\mathcal{T},x)} = \bigcup_{n=1}^{\infty} \{T_1^{k_1} T_2^{k_2} \dots T_n^{k_n}(x) : k_i \ge 0, i = 1, 2, \dots n\} = \mathcal{X}.$$

In this case, the vector x is called a hypercyclic vector for the ∞ -tuple \mathcal{T} .

 1 Speaker