$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University

Some results on the annihilator graph of a commutative ring

Reza Nikandish*
Jundi-Shapur University of Technology, Dezful, Iran

Abstract

Let R be a commutative ring with identity, and let $Z(R)$ be the set of zero-divisors of R. The annihilator graph of R is defined as the undirected graph $A G(R)$ with the vertex set $Z(R)^{*}=Z(R) \backslash\{0\}$, and two distinct vertices x and y are adjacent if and only if $a n n_{R}(x y) \neq a n n_{R}(x) \cup a n n_{R}(y)$. In this talk, some relations between annihilator graph and zero-divisor graph associated with a commutative ring are studied. Moreover, we give some conditions under which the annihilator graph and the zero-divisor graph associated with a ring are identical.

Keywords: Annihilator graph, Zero-divisor graph, Associated prime ideal
Mathematics Subject Classification [2010]: 13A15, 13B99, 05C99

1 Introduction

Recently, a major part of research in algebraic combinatorics has been devoted to the application of graph theory and combinatorics in abstract algebra. There are a lot of papers which apply combinatorial methods to obtain algebraic results in ring theory, see for example $[1,2,3,5]$ and $[7]$.

Throughout this talk, all rings are assumed to be non-domain commutative rings with identity. We denote by $\operatorname{Nil}(R)$ and $Z(R)$, the set of all nilpotent elements and the set of zero-divisors elements of R, respectively. Let $A \subseteq R$. The set of annihilators of A is denoted by $\operatorname{ann}_{R}(A)$ and by A^{*}, we mean $A \backslash\{0\}$. The ring R is said to be reduced, if $\operatorname{Nil}(R)=0$. A prime ideal P of R is called an associated prime ideal, if $a n n_{R}(x)=P$, for some non-zero element $x \in R$. The set of all associated prime ideals of R is denoted by Ass (R).

Let $G=(V, E)$ be a graph, where $V=V(G)$ is the set of vertices and $E=E(G)$ is the set of edges. By \bar{G}, we mean the complement graph of G. The girth of a graph G is denoted by $\operatorname{gr}(G)$. We write $u-v$, to denote an edge with ends u, v. A graph $H=\left(V_{0}, E_{0}\right)$ is called a subgraph of G if $V_{0} \subseteq V$ and $E_{0} \subseteq E$. Moreover, H is called an induced subgraph by V_{0}, denoted by $G\left[V_{0}\right]$, if $V_{0} \subseteq V$ and $E_{0}=\left\{\{u, v\} \in E \mid u, v \in V_{0}\right\}$. Let G_{1} and G_{2} be two disjoint graphs. The join of G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$, is a graph with the vertex set $V\left(G_{1} \vee G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1} \vee G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\{u v \mid u \in$ $\left.V\left(G_{1}\right), v \in V\left(G_{2}\right)\right\}$. Also G is called a null graph if it has no edge. For a vertex x in G,

[^0]
[^0]: *Speaker

