$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University
Talk

On the Biclique Cover of Graphs

Farokhlagha Moazami*
Cyberspace Research Center
Shahid Beheshti University

Abstract

The biclique cover number $b c(G)$ of a graph G is the smallest number of bicliques of G such that every edge of G belongs to at least one of these bicliques. A k-clique covering of a graph G, is an edge covering of G by its cliques such that each vertex is contained in at most k cliques. The smallest k for which G admits a k-clique covering is called local clique cover number of G and is denoted by $l c c(G)$. In this paper, we find the relation between $b c(G)$ and $l c c(\bar{G})$ of the graphs. As a consequence, we show that if G is a graph with m edges such that \bar{G} is a line graph then $b c(G) \leq 8 \ln m$.

Keywords: Biclique Cover, Clique Cover, Local Biclique Cover, Local Clique Cover, Intersection Representation.
Mathematics Subject Classification [2010]: 05B40

1 Introduction

Throughout the paper, all graphs are finite and simple graph. Let $V(G)$ denote the vertex set of the graph G and $E(G)$ denote its edge set. The complement \bar{G} of the graph G is the simple graph whose vertex set is $V(G)$ and whose edges are the pairs of nonadjacent vertices of G. The term clique stands for the complete graph and biclique for the complete bipartite graph. The biclique (resp. clique) cover number $b c(G)$ (resp. $c c(G)$) of a graph G is the smallest number of bicliques (resp. cliques) of G such that every edge of G belongs to at least one of these bicliques (resp. cliques). A k-biclique (resp. k-clique) covering of a graph G, is an edge covering of G by its bicliques (resp. cliques) such that each vertex is contained in at most k bicliques (resp. cliques). The smallest k for which G admits a k-biclique (resp. clique) covering is called local biclique (resp. clique) cover number of G and is denoted by $l b c(G)$ (resp. $l c c(G)$). In the same manner, we can define biclique partition number $b p(G)$ and local biclique partition number $l b p(G)$, if we use partition instead of cover. These measures and its applications have been studied extensively throughout the literature; see $[2,3,4,5,6]$. Finding the relation between these parameters are also interesting and have been studied in the literature; see [8]. In [8], it has been shown that $b p(G)$ can be bounded in term of $b c(G)$, in particular, they have shown that $b p(G) \leq \frac{1}{2}\left(3^{b c(G)}-1\right)$. However, they showed that the analogous result does not hold for the local measures. In this paper, we find a relation between $b c(G)$ and $l c c(\bar{G})$. In particular, we show that if G is a graph with m edges then $b c(G) \leq \frac{1}{2} 4^{l c c(\bar{G})} \ln m$. Finding

[^0]
[^0]: *Speaker

