

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Characterizations of interior hyperideals of semihypergroups towards fuzzy...

pp.: 1–4

Characterizations of interior hyperideals of semihypergroups towards fuzzy points

Saeed Azizpour^{*} University of Mazandaran

Yahya Talebi University of Mazandaran

Abstract

Using a generalized version of the notion of quasi-coincidence of a fuzzy point, we discuss on a generalization of $(\in, \in \lor q)$ -fuzzy interior hyperideal, called $(\in, \in \lor q_k)$ fuzzy interior hyperideal in a semihypergroup. Also, we characterize this notion in different ways. Specially, by using a fuzzy subset of a semihypergroup, we discuss on the generated $(\in, \in \lor q_k)$ -fuzzy interior hyperideal.

Keywords: Semihypergroup, Interior hyperideal, Quasi-coincidence, $(\in, \in \lor q_k)$ -fuzzy interior hyperideal

Mathematics Subject Classification [2010]: 20N20, 08A72

Preliminaries and Notations 1

In this section, for the purpose of reference, we present some definitions and results about semihypergroups and fuzzy sets on which our research in this paper is based.

A hypergroupoid [1] is a non-empty set S together with a map $\cdot : S \times S \longrightarrow \mathcal{P}^*(S)$ where $\mathcal{P}^*(S)$ denotes the set of all the non-empty subsets of S. The image of the pair (x, y) is denoted by $x \cdot y$. If $x \in S$ and A, B are non-empty subsets of S, then $A \cdot B$ is defined by $A \cdot B = \bigcup_{a \in A, b \in B} a \cdot b$. Also $A \cdot x$ is used for $A \cdot \{x\}$ and $x \cdot A$ for $\{x\} \cdot A$. A hypergroupoid (S, \cdot) is called a *semihypergroup* if $(x \cdot y) \cdot z = x \cdot (y \cdot z)$, for all $x, y, z \in S$. A non-empty subset \mathcal{I} of a semihypergroup S is called a *subsemihypergroup* if $\mathcal{I} \cdot \mathcal{I} \subseteq \mathcal{I}$. A subsemihypergroup \mathcal{I} of a semihypergroup S is called *interior hyperideal* if, for all $x, y \in S$ and $a \in \mathcal{I}$, we have $x \cdot a \cdot y \subseteq \mathcal{I}$. Let S and S' be semihypergroups. A function $f: S \longrightarrow S'$ is called a homomorphism if it satisfies the condition $f(x \cdot y) = f(x) \cdot f(y)$, for all $x, y \in S$.

According to [6], a function $\mu: X \longrightarrow [0,1]$ is called a *fuzzy subset* of X. Let f be a mapping from a set X to a set Y and μ, λ be fuzzy subsets of X and Y, respectively. Then the homomorphic preimage $f^{-1}(\lambda)$ and homomorphic image $f(\mu)$ are fuzzy sets in X and Y, respectively, defined by $f^{-1}(\lambda)(x) = \lambda(f(x))$ and

$$f(\mu)(y) = \begin{cases} \sup\{\mu(x) \mid x \in f^{-1}(y)\} & \text{if } f^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise,} \end{cases}$$

for all $x \in X$ and $y \in Y$.

^{*}Speaker