On generalization of derivation on $M V$-algebras

Leili Kamali Ardekani*
University of Ardakan

Abstract

In this paper, we extend the notion of derivation on $M V$-algebras. Moreover, we introduce four types of f-derivation on $M V$-algebras as a generalization of derivation and obtain some related results. Also, some connections among different types of f-derivation is studied.

Keywords: $M V$-Algebra, Boolean algebra, Derivation, f-Derivation, Isotone. Mathematics Subject Classification [2010]: 06D35, 47B47

1 Introduction

The notion of derivation, introduced from the analytic theory is helpful to the research of structure and property in algebraic systems. Jun and Xin [4] applied the notion of derivation to $B C I$-algebras, which is defined in a way similar to the notion in ring theory, and investigated some properties related to this concept. In [8] and [5], authors introduced the notion of f-derivation and (f, g)-derivation in $B C I$-algebras, respectively. In [7], Szász introduced the concept of derivation on lattices and investigated some of its properties. Then, f-derivation on lattices were defined and studied in [2].

In [1], Alshehri applied the notion of derivation to $M V$-algebras and investigated some of its properties. After in [3, 6], the notion of derivation and generalization of it on $M V$-algebras is studied.

In this paper, we review some notions related to $M V$-algebras. Also, we recall and introduce some of types of f-derivation on $M V$-algebras as a generalization of derivation. Then, we obtain some related results.

Definition 1.1. An $M V$-algebra is a structure $(M, \oplus, *, 0)$ where M is a non-empty set, " \oplus " is a binary operation, " $*$ " is a unary operation, and " 0 " is a constant such that the following axioms are satisfied for any $a, b \in M$,
$(M V 1)(M, \oplus, 0)$ is a commutative monoid;
$(M V 2)\left(a^{*}\right)^{*}=a ;$
(MV3) $0^{*} \oplus a=0^{*}$;
$(M V 4)\left(a^{*} \oplus b\right)^{*} \oplus b=\left(b^{*} \oplus a\right)^{*} \oplus a$.

[^0]
[^0]: *Speaker

