

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Complex symmetric weighted composition operators on the weighted...

Complex symmetric weighted composition operators on the weighted Hardy spaces.

Mahsa Fatehi Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran Zahra Hosseini^{*} Department of Mathematics, Estahban Branch, Islamic Azad University, Estahban, Iran

Abstract

Recently many authors have worked on normal weighted composition operators. On the other hand, it is known that every normal operator is a complex symmetric operator. Therefore, in this paper, we study complex symmetric weighted composition operators on the weighted Hardy spaces.

Keywords: Weighted Hardy Space, Weighted Composition Operator, Complex Symmetric.

Mathematics Subject Classification [2010]: 47B33, 47B38

1 Introduction

In 2010, C. C. Cowen and E. Ko obtained an explicit characterization and spectral description of all hermitian weighted composition operators on the classical Hardy space H^2 [5]. This work was later extended to certain weighted Hardy spaces by C. C. Cowen, G. Gunatillake, and E. Ko [4]. Along similar lines, P. Bourdon and S. Narayan have recently studied weighted composition operators on H^2 [1]. Taken together, theses articles have established the existence of several unexpected families of normal weighted composition operators. Then S. R. Garcia and C. Hammond in [11] investigated complex symmetric weighted composition operators on the weighted Hardy spaces.

Definition 1.1. Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} . Let H be a Hilbert space of functions analytic on the unit disk. If the monomials $1, z, z^2, ...$ are an orthogonal set of non-zero vectors with dense span in H, then H is called a weighted Hardy space. We will assume that the norm satisfies the normalization ||1|| = 1. The weight sequence for a weighted Hardy space H is defined to be $\beta(n) = ||z^n||$. The weighted Hardy space with weight sequence $\beta(n)$ will be denoted $H^2(\beta)$. The norm on $H^2(\beta)$ is given by

$$\left\|\sum_{j=0}^{\infty} a_j z^j\right\|^2 = \sum_{j=0}^{\infty} |a_j|^2 \beta(j)^2.$$

 *Speaker