pp.: 1-3

Divisibility Graph for some finite simple groups*

Adeleh Abdolghafourian ${ }^{\dagger}$ Mohammad A. Iranmanesh
Yazd University
Yazd University
Alice C. Niemeyer
Maynooth University

Abstract

The divisibility graph of a finite group G has vertex set the conjugacy class sizes of non-central elements in G and two vertices are adjacent if one divides the other. We determine the connected components of the divisibility graph of the finite simple groups of Lie type over a finite field of odd characteristic.

Keywords: Conjugacy class, Divisibility graph, Finite simple group, Prime graph. Mathematics Subject Classification [2010]: 05C25, 20D05

1 Introduction

In [3] the divisibility graph which is related to a set of positive integers have been introduced. The divisibility graph, $\overrightarrow{\mathrm{D}}(X)$ is a graph with vertex set $X^{*}=X \backslash\{1\}$ and there is an arc between two vertices a and b if and only if a divides b. It is also asked for the structure and especially the number of connected components of this graph (see [3, Question 7]).

Let G be a finite group and $\operatorname{cs}(G)$ denotes the set of conjugacy class sizes of non-central elements in G. We show the underlying graph of $\overrightarrow{\mathrm{D}}(\operatorname{cs}(G))$ by $\mathrm{D}(G)$ without changing the name for convenience. Actually by the divisibility graph $\mathrm{D}(G)$ we mean a graph with vertex set $\operatorname{cs}(G)$ and two conjugacy class sizes are adjacent if one divides the other.

In [1], The structure of divisibility graph $\mathrm{D}(G)$, where G is a symmetric group or an alternating group is studied.

Theorem 1.1. [1, Corollary 11] $D\left(S_{n}\right)$ has at most two connected components. If it is disconnected then one of its connected components is K_{1}.

Theorem 1.2. [1, Corollary 17] $D\left(A_{n}\right)$ has at most three connected components. If it is disconnected, then two of its connected components are K_{1}.

Also in [2], the structure of divisibility graphs for $\operatorname{PSL}(2, q), \operatorname{Sz}(q)$ and 26 sporadic simple groups have been described.

Theorem 1.3. [2, Theorem 2.1] Let $G=\operatorname{PSL}(2, q)$. Then $\mathrm{D}(G)$ is either $3 \mathrm{~K}_{1}$ or $\mathrm{K}_{2}+2 \mathrm{~K}_{1}$.
Theorem 1.4. [2, Theorem 2.2] Let $G=\mathrm{Sz}(q)$. Then $\mathrm{D}(G)=\mathrm{K}_{2}+3 \mathrm{~K}_{1}$.

[^0]
[^0]: *Will be presented in English
 ${ }^{\dagger}$ Speaker

