

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

2-absorbing submodules and flat modules

2-absorbing Submodules and Flat modules *

Sedigheh Moradi University of Shiraz

Abstract

2-absorbing submodule is generalization of the notion of 2-absorbing ideal. We will study 2-absorbing submodules and we prove that 2-absorbing submodules are not too far from prime submodules, which are well-known and studied concepts. Also we find some properties of 2-absorbing submodules in flat modules.

Keywords: 2-absorbing submodule, Flat modules, Faithfully flat modules Mathematics Subject Classification [2010]: 13E05, 13C99, 13C13, 13F05, 13F15.

1 Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. Also we consider n > 1 a positive integer. Let N be a submodule of an R-module M. The set $\{r \in R | rM \subseteq N\}$ is denoted by (N : M). Also we consider $T(M) = \{m \in M | \exists 0 \neq r \in R, rm = 0\}$. A module M is called torsion-free, if T(M) = 0.

According to [1] an ideal I of a ring R is called 2-absorbing, if $abc \in I$ for $a, b, c \in I$ implies that $ab \in I$ or $bc \in I$ or $ac \in I$.

A module version of 2-absorbing ideals is introduced as follows:

Definition 1.1. A proper submodule N of M will be called 2-absorbing if for $r, s \in R$ and $x \in M$, $rsx \in N$ implies that $rs \in (N : M)$ or $rx \in N$ or $sx \in N$.

In order to obtain our main results, we use some definitions and lemma such as the following:

Let F be an R-module. Writing φ to stand for a sequence $\dots \longrightarrow N' \longrightarrow N \longrightarrow N'' \longrightarrow \dots$ of R-modules and linear maps, we let $F \otimes \varphi$ stand for induced sequence $\dots \longrightarrow F \otimes N' \longrightarrow F \otimes N \longrightarrow F \otimes N'' \longrightarrow \dots$

The *R*-module *F* is called flat, if for every sequence φ ,

 φ is exact $\Longrightarrow F \otimes \varphi$ is exact.

According to [2, p. 45], F is called faithfully flat, if for every sequence φ ,

 φ is exact $\iff F \otimes \varphi$ is exact.

^{*}Will be presented in English