

 $46^{\rm th}$ Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

New results on induced almost contact structure on product manifolds

New results on induced almost contact structure on product manifolds

E. Abedi University of Shahid Madani Azarbaijan G.H. Haghighatdoost

University of Shahid Madani Azarbaijan

S. M. Mousavi^{*}

Bonab Islamic Azad University

Abstract

In this paper, first, we investigate some new results on relations between the structures J (on almost Hermitian manifold M) and Σ (on almost contact metric manifold N) with the induced almost contact metric structure $\overline{\Sigma}$ on $M \times N$ by the mentioned structures.

Keywords: Almost complex structure (Hermitian, Kählerian), Almost contact structures (Cosymplectic, Kenmotsu, Sasakian), Product manifolds **Mathematics Subject Classification [2010]:** 53C15, 53D15

1 Preliminaries

1.1 Almost Hermitian and almost hypercomplex structures

Let M be an even-diminational differentiable manifold. An almost Hermitian structure on M is by definition a pair (J,g) on almost complex structure J and a Riemannian metric g satisfying

$$J^2 X = -X, \quad g(JX, JY) = g(X, Y) \tag{1}$$

for any vector fields X, Y on M.

The fundamental form Ω of an almost Hermitian structure is defined by

$$\Omega(X,Y) = g(JX,Y)$$

for any vector fields X, Y and is skew-symmetric. An almost Hermitian manifold is called an almost Kähler manifold if its fundamental form Ω is closed, that is, $d\Omega = 0$.

The Neijenhuis (or the torsion) tensor of an almost complex structure J is defined dy

$$\mathcal{N}(X,Y) = [X,Y] - [JX,JY] + J[X,JY] + J[JX,Y]$$
(2)

for any vector fields X, Y on M. An almost complex structure is said to be integrable if it has no torsion. It is well known that an almost complex structure is a complex structure if and only if it is integrable ([6]). A complex manifold with a Hermitian structure (J, g)is said to be Kählerian if its fundamental form is closed, which is equivalent to

$$\nabla J = 0. \tag{3}$$

^{*}Speaker