

46th Annual Iranian Mathematics Conference

25-28 August 2015

Yazd University

Edge group choosability of planar graphs with maximum degree at least 11 $\,$ pp.: 1–4

Edge group choosability of planar graphs with maximum degree at least 11

Amir Khamseh^{*} Department of mathematics, Kharazmi University

Abstract

A graph G is edge-k-group choosable if its line graph is k-group choosable. In this paper, we present an edge-group choosability version of Vizing's conjecture and we shall show that it is true for graphs with maximum degree less than 4 and for planar graphs with maximum degree at least 11.

Keywords: List coloring, Group choosability, Edge-group choosability Mathematics Subject Classification [2010]: 05C15, 05C20

1 Introduction

We consider only simple graphs. For a graph G, we denote its vertex set, edge set, minimum degree, maximum degree, and line graph by V(G), E(G), $\delta(G)$, $\Delta(G)$, and $\ell(G)$, respectively. Let $d_G(x)$, or simply d(x), denote the degree of a vertex x in G. A plane qraph is a particular drawing of a planar graph in the Euclidean plane. A k-coloring of a graph G is a mapping ϕ from V(G) to the set of colors $\{1, 2, \dots, k\}$ such that $\phi(x) \neq \phi(y)$ for every edge xy. A graph G is k-colorable if it has a k-coloring. The chromatic number $\chi(G)$ is the smallest integer k such that G is k-colorable. A mapping L is said to be a list assignment for G if it supplies a list L(v) of possible colors to each vertex v. A k-list assignment of G is a list assignment L with |L(v)| = k for each vertex $v \in V(G)$. If G has some k-coloring ϕ such that $\phi(v) \in L(v)$ for each vertex v, then G is L-colorable or ϕ is an L-coloring of G. We say that G is k-choosable if it is L-colorable for every k-list assignment L. The choice number or list chromatic number $\chi_l(G)$ is the smallest k such that G is k-choosable. By considering colorings for E(G), we can define analogous notions such as edge-k-colorability, edge-k-choosability, the chromatic index $\chi'(G)$, the choice index $\chi'_{l}(G)$, etc. Clearly, we have $\chi'(G) = \chi(\ell(G))$ and $\chi'_{l}(G) = \chi_{l}(\ell(G))$. The notion of list coloring of graphs has been introduced by Erdős, Rubin, and Taylor [5] and Vizing [13]. The following conjecture, which first appeared in [1], is well-known as the List Edge Coloring Conjecture.

Conjecture 1. If G is a multi-graph, then $\chi'_l(G) = \chi'(G)$.

Although Conjecture 1 has been proved for a few special cases such as bipartite multigraphs [6], complete graphs of odd order [7], multicircuits [15], graphs with $\Delta(G) \geq 12$ that

^{*}This is part of a joint work with G.R. Omidi.