$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University
Poster
Edge group choosability of planar graphs with maximum degree at least 11

Edge group choosability of planar graphs with maximum degree at least 11

Amir Khamseh*
Department of mathematics, Kharazmi University

Abstract

A graph G is edge- k-group choosable if its line graph is k-group choosable. In this paper, we present an edge-group choosability version of Vizing's conjecture and we shall show that it is true for graphs with maximum degree less than 4 and for planar graphs with maximum degree at least 11 .

Keywords: List coloring, Group choosability, Edge-group choosability
Mathematics Subject Classification [2010]: 05C15, 05C20

1 Introduction

We consider only simple graphs. For a graph G, we denote its vertex set, edge set, minimum degree, maximum degree, and line graph by $V(G), E(G), \delta(G), \Delta(G)$, and $\ell(G)$, respectively. Let $d_{G}(x)$, or simply $d(x)$, denote the degree of a vertex x in G. A plane graph is a particular drawing of a planar graph in the Euclidean plane. A k-coloring of a graph G is a mapping ϕ from $V(G)$ to the set of colors $\{1,2, \ldots, k\}$ such that $\phi(x) \neq \phi(y)$ for every edge $x y$. A graph G is k-colorable if it has a k-coloring. The chromatic number $\chi(G)$ is the smallest integer k such that G is k-colorable. A mapping L is said to be a list assignment for G if it supplies a list $L(v)$ of possible colors to each vertex v. A k-list assignment of G is a list assignment L with $|L(v)|=k$ for each vertex $v \in V(G)$. If G has some k-coloring ϕ such that $\phi(v) \in L(v)$ for each vertex v, then G is L-colorable or ϕ is an L-coloring of G. We say that G is k-choosable if it is L-colorable for every k-list assignment L. The choice number or list chromatic number $\chi_{l}(G)$ is the smallest k such that G is k-choosable. By considering colorings for $E(G)$, we can define analogous notions such as edge- k-colorability, edge-k-choosability, the chromatic index $\chi^{\prime}(G)$, the choice index $\chi_{l}^{\prime}(G)$, etc. Clearly, we have $\chi^{\prime}(G)=\chi(\ell(G))$ and $\chi_{l}^{\prime}(G)=\chi_{l}(\ell(G))$. The notion of list coloring of graphs has been introduced by Erdős, Rubin, and Taylor [5] and Vizing [13]. The following conjecture, which first appeared in [1], is well-known as the List Edge Coloring Conjecture.

Conjecture 1. If G is a multi-graph, then $\chi_{l}^{\prime}(G)=\chi^{\prime}(G)$.
Although Conjecture 1 has been proved for a few special cases such as bipartite multigraphs [6], complete graphs of odd order [7], multicircuits [15], graphs with $\Delta(G) \geq 12$ that

[^0]
[^0]: ${ }^{*}$ This is part of a joint work with G.R. Omidi.

