

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Some equivalent condition to strong uniqueness in normed linear space

Some equivalent conditions to strong uniqueness in normed linear space

Noha Eftekhari^{*} Shahrekord University Somayeh Rajabpoor University of Shahrekord

Abstract

In this work we investigate equivalent condition for strong unique best approximation and its uniqueess and also strongly unique. Also, for finite dimensional subspace of $C(X, \mathbb{R})$, Lipschitz continuity of order 1 and strong uniqueness of order 1 are essentially equivalent.

Keywords: Best approximation, Haar space, Strongly unique, Unicity space, Lipschitz condition

Mathematics Subject Classification [2010]: 41A50, 41A65

1 Introduction

Let X be a finite set with the discrete topology and $C(X, \mathbb{R}^k)$ be the space of vector-valued functions from X to k-dimensional Euclidean space \mathbb{R}^k . A norm for functions in $C(X, \mathbb{R}^k)$ is defined as follows:

$$||f|| := \max_{x \in X} ||f(x)||_2,$$

where $\|.\|_2$ denotes the Euclidean norm on \mathbb{R}^k .

Definition 1.1. Let G be a nonempty subset of a normed linear space X and let $x \in X$. An element $y_0 \in G$ is called a best approximation, or nearest point to x from G, if

$$\|x - y_0\| = \mathrm{d}(x, G),$$

where $d(x,G) = \inf_{y \in G} ||x - y||$. The number d(x,G) is called the distance from x to G, or the error in approximating x by G.

The set (possibly empty) of all best approximation from x to G is denoted by $P_G(x)$, i.e.

$$P_G(x) := \{ y \in G | d(x, G) = ||x - y|| \}$$

This defines a mapping P_G from X into the subsets of G called the metric projection onto G.

^{*}Speaker