$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University

On some means inequalities in matrix spases

Maryam Khosravi
Shahid Bahonar University of Kerman

Abstract

In this paper, we state some recent results on non-commutative version of refinements and reverses of ν-weighted arthimetic-geometric-harmonic mean inequality, which is a fundamental relation between two nonnegative real numbers, in the frame work of matrices.

Keywords: Mean value, positive definite matrix, Young inequality
Mathematics Subject Classification [2010]: 15A42, 15A60

1 Introduction

The well-known Young inequality, states that if a, b are two positive numbers and $p, q>0$ such that $\frac{1}{p}+\frac{1}{q}=1$, then

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q},
$$

and equality holds if and only if $a=b$. Equivalently, for distinct positive numbers a, b and $0<\nu<1$, we have

$$
a^{\nu} b^{1-\nu}<\nu a+(1-\nu) b .
$$

By defining weighted arithmetic and geometric means as $A_{\nu}(a, b)=\nu a+(1-\nu) b$ and $G_{\nu}(a, b)=a^{\nu} b^{1-\nu}$, respectively, the Young inequality can be written as $G_{\nu}(a, b)<A_{\nu}(a, b)$, which is known as the arithmetic-geometric mean inequality. A similar inequality, known as geometric-harmonic mean inequality, states that $H_{\nu}(a, b)<G_{n u}(a, b)$ where $H_{\nu}(a, b)=$ $\left(\nu a^{-1}+(1-\nu) b^{-1}\right)^{-1}$ is the harmonic mean of a, b.

One can consider these inequalities on the complex matrix space.
Definition 1.1. For two positive definite matrices A, B, we define

- arithmetic mean of A, B :

$$
A \nabla_{\nu} B=\nu A+(1-\nu) B,
$$

- geometric mean of A, B :

$$
A \not \sharp_{\nu} B=A^{1 / 2}\left(A^{-1 / 2} B A^{-1 / 2}\right)^{1-\nu} A^{1 / 2},
$$

- harmonic mean of A, B :

$$
A!_{\nu} B=\left(\nu A^{-1}+(1-\nu) B^{-1}\right)^{-1} .
$$

