

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

On some means inequalities in matrix spases

On some means inequalities in matrix spases

Maryam Khosravi Shahid Bahonar University of Kerman

Abstract

In this paper, we state some recent results on non-commutative version of refinements and reverses of ν -weighted arthimetic-geometric-harmonic mean inequality, which is a fundamental relation between two nonnegative real numbers, in the frame work of matrices.

Keywords: Mean value, positive definite matrix, Young inequality Mathematics Subject Classification [2010]: 15A42, 15A60

1 Introduction

The well-known Young inequality, states that if a, b are two positive numbers and p, q > 0 such that $\frac{1}{p} + \frac{1}{q} = 1$, then

$$ab \le \frac{a^p}{p} + \frac{b^q}{q},$$

and equality holds if and only if a = b. Equivalently, for distinct positive numbers a, b and $0 < \nu < 1$, we have

$$a^{\nu}b^{1-\nu} < \nu a + (1-\nu)b.$$

By defining weighted arithmetic and geometric means as $A_{\nu}(a,b) = \nu a + (1-\nu)b$ and $G_{\nu}(a,b) = a^{\nu}b^{1-\nu}$, respectively, the Young inequality can be written as $G_{\nu}(a,b) < A_{\nu}(a,b)$, which is known as the arithmetic-geometric mean inequality. A similar inequality, known as geometric-harmonic mean inequality, states that $H_{\nu}(a,b) < G_{nu}(a,b)$ where $H_{\nu}(a,b) = (\nu a^{-1} + (1-\nu)b^{-1})^{-1}$ is the harmonic mean of a, b.

One can consider these inequalities on the complex matrix space.

Definition 1.1. For two positive definite matrices A, B, we define

• arithmetic mean of A, B:

$$A\nabla_{\nu}B = \nu A + (1-\nu)B,$$

• geometric mean of A, B:

$$A\sharp_{\nu}B = A^{1/2}(A^{-1/2}BA^{-1/2})^{1-\nu}A^{1/2},$$

• harmonic mean of A, B:

$$A!_{\nu}B = (\nu A^{-1} + (1 - \nu)B^{-1})^{-1}.$$