On Laplacian eigenvalues of graphs

Kinkar Ch. Das*
Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea

Abstract

Let $G=(V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix of its vertex degrees and by $A(G)$ its adjacency matrix. Then the Laplacian matrix of G is $L(G)=D(G)-A(G)$. Denote the spectrum of $L(G)$ by $S(L(G))=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)$, where we assume the eigenvalues to be arranged in nonincreasing order: $\mu_{1} \geq \mu_{2} \geq$ $\cdots \geq \mu_{n-1} \geq \mu_{n}=0$. Let a be the algebraic connectivity of graph G. Then $a=\mu_{n-1}$. Among all eigenvalues of the Laplacian matrix of a graph, the most studied is the second smallest, called the algebraic connectivity ($\mathrm{a}(\mathrm{G})$) of a graph [5]. In this talk we show some results on $\mu_{1}(G)$ and $a(G)$ of graph G. We obtain some integer and real Laplacian eigenvalues of graphs. Moreover, we discuss several relations between Laplacian eigenvalues and graph parameters. Finally, we give some conjectures on the Laplacian eigenvalues of graphs.

Keywords: Graph, Largest Laplacian eigenvalue, Algebraic connectivity, Diameter, Minimum degree
Mathematics Subject Classification [2010]: 05C50

References

[1] M. Aouchiche, P. Hansen, A survey of automated conjectures in spectral graph theory, Linear Algebra Appl. 432 (2010) 2293-2322.
[2] K. C. Das, Conjectures on index and algebraic connectivity of graphs, Linear Algebra Appl. 433 (2010) 1666-1673.
[3] K. C. Das, Proof of conjectures on adjacency eigenvalues of graphs, Discrete Math. 313 (2013) 19-25.
[4] K. C. Das, S.-G. Lee, G.-S. Cheon, On the conjecture for certain Laplacian integral spectrum of graphs, Journal of Graph Theory 63 (2010) 106-113.
[5] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298305.
[6] R. Merris, Laplacian matrices of graphs: A survey, Linear Algebra Appl. 197,198 (1994) 143-176.

Email: kinkardas2003@gmail.com
Website: http://kinkardas.tripod.com

[^0]
[^0]: *Speaker

