

46th Annual Iranian Mathematics Conference 25-28 August 2015

Yazd University

Some results on almost L-Dunford–Pettis sets in Banach lattices

Some results on almost L-Dunford–Pettis sets in Banach lattices

Halimeh Ardakani^{*} Payame Noor University Manijeh Salimi Farhangian University

Abstract

Following the concept of L–limited sets in dual Banach spaces, we introduce the concept of almost L–Dunford–Pettis sets in dual Banach lattices. Then by a class of operators on Banach lattices, so called disjoint Dunford–Pettis completely continuous operators, we characterize Banach lattices with the positive relatively compact Dunford–Pettis property.

Keywords: Dunford–Pettis set, relatively compact Dunford–Pettis property, Dunford–Pettis completely continuous operator. **Mathematics Subject Classification [2010]:** 46A40, 46B42

1 Introduction

A subset A of a Banach space X is called limited (resp. Dunford–Pettis (DP)), if every weak^{*} null (resp. weak null) sequence (x_n^*) in X^{*} converges uniformly on A, that is

$$\lim_{n \to \infty} \sup_{a \in A} |\langle a, x_n^* \rangle| = 0.$$

Also if $A \subseteq X^*$ and every weak null sequence (x_n) in X converges uniformly on A, we say that A is an L-set.

Every relatively compact subset of E is DP. If every DP subset of a Banach space X is relatively compact, then X has the relatively compact DP property (abb. $DP_{rc}P$). For example, dual Banach spaces with the weak Radon-Nikodym property (abb. WRNP) and Schur spaces (i.e., weak and norm convergence of sequences in X coincide) have the $DP_{rc}P$ [4] and [5]. Also we recall that a Banach space X has the $DP_{rc}P$ if and only if every DP and weakly null sequence (x_n) in X is norm null.

Recently, the authors in [7] and [8], introduced the class of L-limited sets and Dunford-Pettis completely continuous (abb. DPcc) operators on Banach spaces. In fact, a bounded linear operator $T: X \to Y$ between two Banach spaces is DPcc if it carries DP and weakly null sequences in X to norm null ones in Y. The class of all DPcc operators from X to Y is denoted by DPcc(X,Y). A norm bounded subset B of a dual Banach space X^* is said to be an L-limited set if every weakly null and limited sequence (x_n) of X converges uniformly to zero on the set B, that is $\sup_{f \in B} |f(x_n)| \to 0$. We use some techniques to those in [2] for L-sets and almost L- sets in Banach lattices.

We refer the reader for undefined terminologies, to the classical references [1]

^{*}Speaker