

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Continuous and exact-continuous frame for Hilbert spaces

Continuous and Exact-Continuous Frame for Hilbert Spaces

Mezban Habibi*

Ali Reza Sharifi

Abstract

In this paper we remaind some property for the continuous frame for the Hilbert space and show that the continuous frame and exact-continuous frame are equal under some conditions.

Keywords: Hilbert space, Continuous frame, Exact-Continuous frame, Bases, Measure space.

Mathematics Subject Classification [2010]: 57R25, 42C20

1 Introduction

Let \mathcal{H} be a complex Hilbert space and \mathcal{M} be a measure space with a positive measure μ . A continuous frame is a family $\{\psi_k\}_{k \in \mathcal{M}}$ for which the following hold: (c1) For all $h \in \mathcal{H}$, the mapping

$$\Phi: \mathcal{M} \to \mathcal{C}, \Phi(k) = < h, \psi_k >$$

is a measurable function on \mathcal{M} .

(c2) There exist constants A, B > 0 such that

$$A\|h\|^{2} \leq \int_{\mathcal{M}} |\langle h, \psi_{k} \rangle|^{2} d\mu(k) \leq B\|h\|^{2}, \forall h \in \mathcal{H}$$

If A = B then the continuous frame is called continuous tight frame and if A = B = 1then the continuous frame is called normalized continuous tight frame.

For the sake of simplicity we assume that the mapping $x \mapsto \langle f, \psi_k \rangle$ is weakly continuous for all $k \in \mathcal{M}$. Note that if \mathcal{M} be a countable set and μ the counting measure then we obtain the usual definition of a (discrete) frame. By Cauchy-Schwartz inequality

$$\int_{\mathcal{M}} < f, \psi_k > < \psi_k, g > d\mu(k)$$

is well defined for all $f, g \in \mathcal{H}$.

*Speaker