

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

A computational algorithm for the inverse of positive definite tri-diagonal \dots pp.: 1–4

A computational algorithm for the inverse of positive definite tri-diagonal matrices

T. Dehghn Niri^{*} Yazd University

Abstract

In this paper, employing the general Cholesky Q.I.F. factorization, an efficient algorithm is developed to find the inverse of a general positive definite tridiagonal matrix.

Keywords: Cholesky Q.I.F. factorization, Positive definite tridiagonal. **Mathematics Subject Classification** [2010]: 13D45, 39B42

1 Introduction

The linear system of equations whose coefficient matrix is of tri-diagonal type of the form

	a_1	c_1	0	•••	0	
T =	c_1	a_2	c_2	۰.	÷	
	0	c_2	a_3	·	0	(1.1)
	÷	۰.	·	·	c_{n-1}	
	0		0	c_{n-1}	a_n	

is of special importance in many scientific and engineering applications. For example in parallel computing and in solving differential equations using finite differences.

2 Cholesky Q.I.F. factorization

Consider the linear system Ax = f, where A is an $n \times n$ symmetric positive definite matrix. Suppose n = 2m - 2. Assume that there exists a matrix W such that , $A = WW^T$, where

... $w_{1,1} \quad w_{1,2}$. . . $w_{1,n}$. . . 0 . . . 0 $w_{2,2}$ $w_{2,n}$ 0 W =0 $w_{m-1,m-1} \quad w_{m-1,m}$ 0 $w_{m,m}$ ÷ 0 0 0 . 0 . 0 . . . 0 $w_{n-1.3}$ 0 $w_{n-1,n-1}$ 0 $w_{n,2}$ $w_{n,n}$

*Speaker