$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University
pp.: 1-4

A computational algorithm for the inverse of positive definite tri-diagonal matrices

T. Dehghn Niri*
Yazd University

Abstract

In this paper, employing the general Cholesky Q.I.F. factorization, an efficient algorithm is developed to find the inverse of a general positive definite tridiagonal matrix.

Keywords: Cholesky Q.I.F. factorization, Positive definite tridiagonal. Mathematics Subject Classification [2010]: 13D45, 39B42

1 Introduction

The linear system of equations whose coefficient matrix is of tri-diagonal type of the form

$$
T=\left[\begin{array}{ccccc}
a_{1} & c_{1} & \circ & \cdots & \circ \tag{1.1}\\
c_{1} & a_{2} & c_{2} & \ddots & \vdots \\
\circ & c_{2} & a_{3} & \ddots & \circ \\
\vdots & \ddots & \ddots & \ddots & c_{n-1} \\
\circ & \cdots & \circ & c_{n-1} & a_{n}
\end{array}\right]
$$

is of special importance in many scientific and engineering applications. For example in parallel computing and in solving differential equations using finite differences.

2 Cholesky Q.I.F. factorization

Consider the linear system $A x=f$, where A is an $n \times n$ symmetric positive definite matrix. Suppose $n=2 m-2$. Assume that there exists a matrix W such that, $A=W W^{T}$, where

[^0]
[^0]: *Speaker

