pp.: 1-4

# On the Wiener index of Sierpiński graphs 

Ehsan Estaji*<br>Hakim Sabzevari University

Yasser Alizadeh<br>Hakim Sabzevari University


#### Abstract

Wiener index of graph $G$ is defined as sum of distances of all pairs of vertices. In this paper, the Wiener index of Sierpiński graphs is computed and explicit formula is obtained.


Keywords: Wiener index, Sierpiński graphs, Total distance
Mathematics Subject Classification [2010]: 05C12, 05C76, 05C90

## 1 Introduction

Sierpiński graphs $S_{k}^{n}$ were introduced by S. Klavzar and Milutinovic in [2] The graph $S_{k}^{1}$ is the complete graph in $k$ vertices and $S_{3}^{n}$ are isomorphic to the tower of Hanoi graphs. Mathematical properties of the graph $S_{k}^{n}$ have been well studied. For example a classification of their covering codes is given in [1] metric properties of Sierpiński graphs were studied in [3] and [4]. The $S_{k}^{n}$ can be defined recursively with the following process: $S_{k}^{1}$ is a complete graph. To construct $S_{k}^{n+1}$, consider $S_{k}^{n}$ and adding exactly one edge between each pair of copies. When $k=2$ then $S_{k}^{n}$ is isomorphic to $P_{2^{n}}$ and in the case $k=3$ these graphs are exactly tower of Hanoi graphs. The structure of tower of Hanoi graph is illustrated in Fig 1. The vertices of $S_{k}^{n}$ can be identified with words of size $n$ on alphabet


Figure 1: Structure of Sierpiński graph $S_{3}^{n}$
$\{1,2, \cdots, k\}$. Let $u=\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ and $v=\left(v_{1}, v_{2}, \cdots, v_{n}\right)$ be two different vertices. $u$ and $v$ are adjacent if and only if there exists $i \in\{1,2, \cdots, k\}$ such that

- $u_{t}=v_{t}$ for $1 \leq t \leq i-1$

[^0]
[^0]:    *Speaker

