

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

On the Wiener index of Sierpiński graphs

On the Wiener index of Sierpiński graphs

Ehsan Estaji* Hakim Sabzevari University Yasser Alizadeh Hakim Sabzevari University

Abstract

Wiener index of graph *G* is defined as sum of distances of all pairs of vertices. In this paper, the Wiener index of Sierpiński graphs is computed and explicit formula is obtained.

Keywords: Wiener index, Sierpiński graphs, Total distance **Mathematics Subject Classification [2010]:** 05C12, 05C76, 05C90

1 Introduction

Sierpiński graphs S_k^n were introduced by S. Klavzar and Milutinovic in [2] The graph S_k^1 is the complete graph in k vertices and S_3^n are isomorphic to the tower of Hanoi graphs. Mathematical properties of the graph S_k^n have been well studied. For example a classification of their covering codes is given in [1] metric properties of Sierpiński graphs were studied in [3] and [4]. The S_k^n can be defined recursively with the following process: S_k^1 is a complete graph. To construct S_k^{n+1} , consider S_k^n and adding exactly one edge between each pair of copies. When k = 2 then S_k^n is isomorphic to P_{2^n} and in the case k = 3 these graphs are exactly tower of Hanoi graphs. The structure of tower of Hanoi graph is illustrated in Fig 1. The vertices of S_k^n can be identified with words of size n on alphabet

Figure 1: Structure of Sierpiński graph S_3^n

 $\{1, 2, \dots, k\}$. Let $u = (u_1, u_2, \dots, u_n)$ and $v = (v_1, v_2, \dots, v_n)$ be two different vertices. u and v are adjacent if and only if there exists $i \in \{1, 2, \dots, k\}$ such that

• $u_t = v_t$ for $1 \le t \le i - 1$

^{*}Speaker