$46^{\text {th }}$ Annual Iranian Mathematics Conference
25-28 August 2015
Yazd University

On the cospectrality of graphs

Mohammad Reza Oboudi ${ }^{\text {a,b* }}$
${ }^{\text {a }}$ Department of Mathematics, Shiraz University, 71457-44776, Shiraz, Iran
${ }^{\mathrm{b}}$ School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

Abstract

Richard Brualdi proposed in [Research problems from the Aveiro workshop on graph spectra, Linear Algebra and its Applications, 423 (2007) 172-181.] the following problem: (Problem AWGS.4) Let G_{n} and G_{n}^{\prime} be two nonisomorphic graphs on n vertices with spectra $$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \quad \text { and } \quad \lambda_{1}^{\prime} \geq \lambda_{2}^{\prime} \geq \cdots \geq \lambda_{n}^{\prime}
$$

respectively. Define the distance between the spectra of G_{n} and G_{n}^{\prime} as

$$
\left.\lambda\left(G_{n}, G_{n}^{\prime}\right)=\sum_{i=1}^{n}\left(\lambda_{i}-\lambda_{i}^{\prime}\right)^{2} \quad \text { (or use } \sum_{i=1}^{n}\left|\lambda_{i}-\lambda_{i}^{\prime}\right|\right)
$$

Define the cospectrality of G_{n} by

$$
\operatorname{cs}\left(G_{n}\right)=\min \left\{\lambda\left(G_{n}, G_{n}^{\prime}\right): G_{n}^{\prime} \text { not isomorphic to } G_{n}\right\}
$$

Let

$$
\operatorname{cs}_{n}=\max \left\{\operatorname{cs}\left(G_{n}\right): G_{n} \text { a graph on } n \text { vertices }\right\}
$$

Problem A. Investigate $\operatorname{cs}\left(G_{n}\right)$ for special classes of graphs.
Problem B. Find a good upper bound on cs_{n}.
In this paper we study Problem A and determine the cospectrality of all complete bipartite graphs by the Euclidian distance. Let $K_{p, q}$ be the complete bipartite graphs with parts of sizes p and q. We prove that for every positive integers p and q there are some positive integers p^{\prime}, q^{\prime} and a non-negative integer r such that $\operatorname{cs}\left(K_{p, q}\right)=$ $\lambda\left(K_{p, q}, K_{p^{\prime}, q^{\prime}}+r K_{1}\right)$. As a consequence we determine the cospectrality of stars.

Keywords: Spectra of graphs, Cospectrality of graphs, Measures on spectra of graphs, Adjacency matrix of a graph
Mathematics Subject Classification [2010]: 05C50, 05C31

[^0]
[^0]: *Speaker

