Time maps and exact multiplicity results for one-dimensional prescribed mean curvature equations. II

Hongjing Pan ${ }^{\text {a }}$, Ruixiang Xing ${ }^{\text {b,* }}$
${ }^{\text {a }}$ School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
${ }^{\mathrm{b}}$ School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510275, China

ARTICLE INFO

Article history:

Received 12 December 2010
Accepted 9 March 2011
Accepting Editor: Ravi Agarwal

MSC:

35J93
34C23
34K10

Keywords:

Exact multiplicity
Bifurcation curve
Mean curvature equation
Time map
Discontinuous solution
Exponential nonlinearity
Power nonlinearity
Sign-changing solution

A B S T R A C T

We consider non-classical solutions of the quasilinear boundary value problem

$$
\left\{\begin{array}{l}
-\left(\frac{u^{\prime}}{\sqrt{1+\left(u^{\prime}\right)^{2}}}\right)^{\prime}=\lambda f(u), \quad x \in(-L, L), \\
u(-L)=u(L)=0,
\end{array}\right.
$$

where λ and L are positive parameters. We give complete descriptions of the structure of bifurcation curves and determine the exact numbers of positive non-classical solutions of the model problems for various nonlinearities $f(u)=e^{u}, f(u)=(1+u)^{p}(p>0), f(u)=$ $e^{u}-1, f(u)=u^{p}(p>0)$, and $f(u)=a^{u}(a>0)$. The methods used are elementary and based on a detailed analysis of time maps. Moreover, for the case $f(u)=|u|^{p-1} u(p>0)$, we also obtain the exact number of all sign-changing non-classical solutions and show the global structure of bifurcation curves.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the following quasilinear boundary value problem

$$
\left\{\begin{array}{l}
-\left(\frac{u^{\prime}}{\sqrt{1+\left(u^{\prime}\right)^{2}}}\right)^{\prime}=\lambda f(u), \quad x \in(-L, L) \tag{1.1}\\
u(-L)=u(L)=0
\end{array}\right.
$$

where λ and L are positive parameters. This paper is a continuation of the paper by Pan and Xing [1], where several exact multiplicity results for positive classical solutions and sign-changing classical solutions of (1.1) are obtained. In the present paper, we study the exact multiplicity of non-classical solutions of (1.1).

Classical solutions of (1.1) have been well investigated (see [1-6]). In [3], Habets and Omari considered the problem (1.1) with power nonlinearity $f(u)=u^{p}(p>0)$. By the shooting method, they obtained the exact number of positive solutions. They also discussed various combined effects of concave and convex nonlinearities by an upper and lower solution method. In [4], the first author considered the problem (1.1) with exponential nonlinearity $f(u)=\mathrm{e}^{u}$. He obtained the exact

[^0]
[^0]: * Corresponding author.

 E-mail addresses: panhj@scnu.edu.cn (H. Pan), xingrx@mail.sysu.edu.cn (R. Xing).

