Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Smooth bifurcation branches of solutions for a Signorini problem

Jan Eisner^{a,*}, Milan Kučera^b, Lutz Recke^c

^a Institute of Mathematics and Biomathematics, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic ^b Institute of Mathematics, Academy of Sciences of the Czech Republic, Žitná 25, 11567 Prague 1, Czech Republic ^c Institute of Mathematics of the Humboldt University of Berlin, Unter den Linden 6, 10099 Berlin, Germany

ARTICLE INFO

Article history: Received 21 June 2010 Accepted 29 October 2010

MSC: 35J85 35B32 47J07

Keywords: Smooth bifurcation Signorini problem Variational inequality

ABSTRACT

We study a bifurcation problem for the equation $\Delta u + \lambda u + g(\lambda, u)u = 0$ on a rectangle with Signorini boundary conditions on a part of one edge and mixed (zero Dirichlet and Neumann) boundary conditions on the rest of the boundary. Here $\lambda \in \mathbb{R}$ is the bifurcation parameter, and *g* is a small perturbation. We prove, under certain assumptions concerning an eigenfunction u_0 corresponding to an eigenvalue λ_0 of the linearized equation with the same nonlinear boundary conditions, the existence of a local smooth branch of nontrivial solutions bifurcating from the trivial solutions at λ_0 in the direction of u_0 . The contact sets of these nontrivial solutions are intervals which change smoothly along the branch. The main tool of the proof is a local equivalence of the unilateral BVP to a system consisting of a corresponding classical BVP and of two scalar equations. To this system classical Crandall–Rabinowitz type local bifurcation techniques (scaling and Implicit Function Theorem) are applied.

© 2010 Elsevier Ltd. All rights reserved.

(1.6)

1. Introduction

Let $\Omega := (0, 1) \times (0, \ell)$ be a rectangle with $\ell > 0$. Let its boundary be divided into a "Dirichlet part" $\Gamma_D := (\{0\} \times (0, \ell)) \cup (\{1\} \times (0, \ell))$, a "unilateral part" $\Gamma_U := ((\gamma_1, \gamma_2) \times \{0\}) \subset ((0, 1) \times \{0\})$ with $0 < \gamma_1 < \gamma_2 < 1$ and a "Neumann part" $\Gamma_N := \partial \Omega \setminus (\overline{\Gamma_D} \cup \overline{\Gamma_U})$ (see Fig. 1). We will study bifurcation from the trivial solutions of the Signorini boundary value problem

$\Delta u + \lambda u + g(\lambda, u)u = 0$ in Ω ,	(1	1.1)
	`		1

 $u = 0 \quad \text{on } \Gamma_D, \qquad \partial_\nu u = 0 \quad \text{on } \Gamma_N,$ (1.2)

$$u \le 0, \qquad \partial_{\nu} u \le 0, \qquad u \partial_{\nu} u = 0 \quad \text{on } \Gamma_U,$$
 (1.3)

where λ is a real bifurcation parameter and $g:\mathbb{R}^2\to\mathbb{R}$ is a $C^1\text{-smooth}$ function,

$$g(\lambda, 0) = 0 \quad \text{for all } \lambda \in \mathbb{R},$$
 (1.4)

$$|\partial_{u}g(\lambda, u)| + |\partial_{\lambda}g(\lambda, u)| \le C(1 + |u|^{q}) \quad \text{for all } (\lambda, u) \in \mathbb{R}^{2}$$
(1.5)

with some C > 0 and q > 1. Furthermore, we will assume that we are given an eigenvalue $\lambda_0 > 0$ and a corresponding normalized eigenfunction u_0 for the (nonlinear) eigenvalue problem

 $\Delta u + \lambda u = 0 \quad \text{in } \Omega$

* Corresponding author. E-mail address: eisner@math.cas.cz (J. Eisner).

 $^{0362\}text{-}546X/\$$ – see front matter C 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.10.058