Intersecting nonhomogeneous Cantor sets with their translations

Yuru Zou ${ }^{\text {a }}$, Wenxia Li $^{\text {b,* }}$, Caiguang Yan ${ }^{\text {b }}$
${ }^{\text {a College of Mathematics and Computational Science, Shenzhen University, Shenzhen 518060, PR China }}$
${ }^{\text {b }}$ Department of Mathematics, East China Normal University, Shanghai 200241, PR China

A R T I C L E I N F O

Article history:

Received 16 November 2010
Accepted 12 April 2011
Communicated by Ravi Agarwal

MSC:

28A80
28A78

Keywords:

Nonhomogeneous Cantor sets
Intersection
Generalized Moran set
Finite type
Graph-directed set

Abstract

A scheme is given to compute the Hausdorff dimensions for the intersection of a class of nonhomogeneous Cantor sets with their translations.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let $\beta \in(0,1 / 2)$ and let

$$
\psi_{k}(x)=\beta x+k(1-\beta), \quad k=-1,0,1 .
$$

The middle- $(1-2 \beta)$ Cantor set $\Gamma_{\beta} \subseteq[0,1]$ is defined as the unique invariant nonempty compact set under maps ψ_{0} and ψ_{1} :

$$
\begin{equation*}
\Gamma_{\beta}=\psi_{0}\left(\Gamma_{\beta}\right) \cup \psi_{1}\left(\Gamma_{\beta}\right) \tag{1}
\end{equation*}
$$

One also call Γ_{β}, the self-similar set generated by the iterated function system (IFS) $\left\{\psi_{0}, \psi_{1}\right\}$. The set $\Gamma_{1 / 3}$ is the classical middle third Cantor set. In the past two decades, intersection of Cantor sets has been the subject of several studies [1-12]. The context and motivation are numerous, but mainly come from the discipline of dynamical systems. A brief history of why intersection of Cantor sets is important in dynamical systems is described by Davis and Hu in [1]. The intersection $\Gamma_{1 / 3} \cap\left(\Gamma_{1 / 3}+t\right)$ (or more general, $\Gamma_{\beta} \cap\left(\Gamma_{\beta}+t\right)$) has been extensively studied by lots of authors.

When $0<\beta<1 / 3, \Gamma_{\beta}-\Gamma_{\beta}$ is the self-similar set generated by the IFS $\left\{\psi_{0}, \psi_{1}, \psi_{-1}\right\}$ and satisfies the open set condition (see (3) in Section 2) so that for each $t \in \Gamma_{\beta}-\Gamma_{\beta}$ the set $\Gamma_{\beta} \cap\left(\Gamma_{\beta}+t\right)$ is just a generalized Moran set (see (5) in Section 2). Thus, the Hausdorff, packing and box-counting dimensions of $\Gamma_{\beta} \cap\left(\Gamma_{\beta}+t\right)$ can then be determined. When $\beta=1 / 3$, it can be dealt with in the same way though a bit of difficulty occurs. However, when $1 / 3<\beta<1 / 2$, the set $\Gamma_{\beta} \cap\left(\Gamma_{\beta}+t\right)$ presents very complicated geometrical structure (see (4) in Section 2). A natural question is the following.

[^0]
[^0]: * Corresponding author.

 E-mail address: wxli@math.ecnu.edu.cn (W. Li).

