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a b s t r a c t

We study the existence of (generalized) bounded solutions existing for all times for
nonlinear parabolic equations with nonlinear boundary conditions on a domain that is
bounded in space and unbounded in time (the entire real line). We give a counterexample
which shows that a (weak)maximumprinciple does not hold in general for linear problems
defined on the entire real line in time. We consider a boundedness condition at minus
infinity to establish (one-sided) L∞-a priori estimates for solutions to linear boundary
value problems and derive a weak maximum principle which is valid on the entire real
line in time. We then take up the case of nonlinear problems with (possibly) nonlinear
boundary conditions. By using comparison techniques, some (delicate) a priori estimates
obtained herein, and nonlinear approximation methods, we prove the existence and, in
some instances, positivity and uniqueness of strong full bounded solutions existing for all
times.
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1. Introduction

Consider the nonlinear parabolic boundary value problem
∂u
∂t

(x, t) − Lu(x, t) = f (x, t, u) a.e. in Ω × R,

Bu = ϕ(x, t, u) a.e. on ∂Ω × R,
sup
Ω×R

|u(x, t)| < ∞,

(1.1)

where Ω is a bounded, open and connected subset of RN with boundary ∂Ω and closure Ω . We suppose that L is a second-
order, uniformly elliptic differential operator with time-dependent coefficients and B is a linear first-order boundary
operator which is of either Dirichlet, Neumann, or regular oblique type. We suppose that the coefficients of the operators
L and B are, say, measurable and bounded. The reaction and the boundary nonlinearities f and ϕ are, say, Carathéodory
functions.
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