ELSEVIER

Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

A new topological degree theory for perturbations of the sum of two maximal monotone operators

Dhruba R. Adhikari^a, Athanassios G. Kartsatos^{b,*}

^a Department of Sciences and Mathematics, Mississippi University for Women, 1100 College Street, MUW-100, Columbus, MS 39701, USA ^b Department of Mathematics, University of South Florida, Tampa, FL 33620-5700, USA

ARTICLE INFO

Article history: Received 18 December 2009 Accepted 6 April 2011 Communicated by Ravi Agarwal

MSC: Primary 47H14 47H07 47H11

Keywords: Maximal monotone operators Kartsatos–Skrypnik degree theory Strongly quasibounded perturbations

ABSTRACT

Let *X* be an infinite dimensional real reflexive Banach space with dual space X^* and $G \subset X$, open and bounded. Assume that *X* and X^* are locally uniformly convex. Let $T : X \supset D(T) \rightarrow 2^{X^*}$ be maximal monotone and strongly quasibounded, $S : X \supset D(S) \rightarrow X^*$ maximal monotone, and $C : X \supset D(C) \rightarrow X^*$ strongly quasibounded w.r.t. *S* and such that it satisfies a generalized (S_+) -condition w.r.t. *S*. Assume that $D(S) = L \subset D(T) \cap D(C)$, where *L* is a dense subspace of *X*, and $0 \in T(0)$, S(0) = 0. A new topological degree theory is introduced for the sum T + S + C, with degree mapping d(T + S + C, G, 0). The reason for this development is the creation of a useful tool for the study of a class of time-dependent problems involving three operators. This degree theory is based on a degree theory that was recently developed by Kartsatos and Skrypnik just for the single-valued sum S + C, as above.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction-preliminaries

In what follows, the symbol X stands for an infinite dimensional real reflexive Banach space, which has been renormed so that it and its dual X^* are locally uniformly convex. The symbol $\|\cdot\|$ stands for the norm of X, X^* , and $J : X \to X^*$ is the normalized duality mapping.

In what follows, "continuous" means "strongly continuous" and the symbol " \rightarrow " (" \rightarrow ") means strong (weak) convergence.

The symbol \Re (\Re_+) stands for the set ($-\infty$, ∞) ([0, ∞)) and the symbols ∂D , \overline{D} denote the strong boundary and closure of the set D, respectively. We denote by $B_r(0)$ the open ball of X or X^* with center at zero and radius r > 0.

For an operator $T : X \to 2^{X^*}$, we denote by D(T) the effective domain of T, i.e. $D(T) = \{x \in X : Tx \neq \emptyset\}$. We denote by G(T) the graph of T, i.e. $G(T) = \{(x, y) : x \in D(T), y \in Tx\}$. An operator $T : X \supset D(T) \to 2^{X^*}$ is said to be "monotone", if for every $x, y \in D(T)$ and every $u \in Tx, v \in Ty$, we have

$$\langle u-v, x-y\rangle \ge 0.$$

A monotone operator *T* is "maximal monotone" if *G*(*T*) is maximal in *X* × *X*^{*}, when *X* × *X*^{*} is partially ordered by inclusion. In our setting, a monotone operator *T* is maximal if and only if $R(T + \lambda J) = X^*$ for all $\lambda \in (0, \infty)$. If *T* is maximal monotone, then the operator $T_t \equiv (T^{-1} + tJ^{-1})^{-1} : X \to X^*$ is bounded, continuous (see Lemma 1), maximal monotone and such that $T_t x \to T^{\{0\}} x$ as $t \to 0^+$ for every $x \in D(T)$, where $T^{\{0\}} x$ denotes the element $y^* \in Tx$ of minimum norm, i.e. $||T^{\{0\}}x|| = \inf\{||y^*|| : y^* \in Tx\}$. In our setting, this infimum is always attained and $D(T^{\{0\}}) = D(T)$. Also, $T_t x \in TJ_t x$,

^{*} Corresponding author. Tel.: +1 813 974 2643; fax: +1 813 974 2700.

E-mail addresses: dadhikari@as.muw.edu (D.R. Adhikari), hermes@math.usf.edu (A.G. Kartsatos).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.04.023