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a b s t r a c t

We consider the following problem in theMHD approximation: the vesselΩ1 ⊂ Ω is filled
with an incompressible, electrically conducting fluid, and is surrounded by a dielectric or
by vacuum, occupying the bounded domainΩ2 = Ω \ Ω1. InΩ we have a magnetic and
electric field and the external surface S = ∂Ω is an ideal conductor. The emphasis in the
paper is on whenΩ is not simply connected, in which case the MHD system is degenerate.
We use Hodge-type decomposition theorems to obtain strong solutions locally in time
or global for small enough initial data, and a linearization principle for the stability of a
stationary solution.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Given two bounded smooth domains Ω1 and Ω in three-dimensional space, with Ω1 b Ω , we consider the following
problem.

The vessel Ω1 is filled with an incompressible, electrically conducting fluid, and is surrounded by a dielectric or by vacuum,
occupying the bounded domainΩ2 = Ω \Ω1.We have a magnetic and electric field inΩ and the external surface S = ∂Ω is an
ideal conductor. We assign inΩ1 an external hydrodynamic force density f and a current density j , and we assign at time t = 0
the initial velocity and magnetic field. We determine the motion of the fluid.

We will assume the quasi-stationary approximation, finite conductivity σ of the fluid and ignore the Hall effect. In this
setting the equations of magnetohydrodynamics inΩ1 have the form

vt − ν1v + (v · ∇)v − µ(H · ∇)H + ∇


p + µ

|H |
2

2


= f , (1)

µHt = −rotE, rotH = σ(E + µ(v × H))+ j (2)

divv = 0, divH = 0 (3)

where v and p are the velocity and pressure of the liquid, H and E are the magnetic and electric vector fields respectively,
µ, ν > 0 are the magnetic permeability and the viscosity of the fluid and σ > 0 is the electric permeability. For when the
fluid and the dielectric (or vacuum) have different magnetic permeabilities, respectively µ1 and µ2, we will set µ(x) ≡ µ1
inΩ1 and µ(x) ≡ µ2 inΩ2 Eliminating the electric field from (2) one obtains inΩ1

Ht + η rotrotH − rot(v × H) = η rotj, divH = 0, (4)

where η = 1/σµ1 is the magnetic diffusivity of the fluid.
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