Contents lists available at ScienceDirect

Nonlinear Analysis

On a problem of magnetohydrodynamics in a multi-connected domain

Sunra J.N. Mosconi^{a,*}, Vsevolod A. Solonnikov^b

^a University of Catania, Italy

^b University of St. Petersburg, Russian Federation

ARTICLE INFO

Article history: Received 4 February 2010 Accepted 1 September 2010

Keywords: Magnetohydrodynamics Navier-Stokes equations Stability Hodge decomposition Maxwell equations

ABSTRACT

We consider the following problem in the MHD approximation: the vessel $\Omega_1 \subset \Omega$ is filled with an incompressible, electrically conducting fluid, and is surrounded by a dielectric or by vacuum, occupying the bounded domain $\Omega_2 = \Omega \setminus \Omega_1$. In Ω we have a magnetic and electric field and the external surface $S = \partial \Omega$ is an ideal conductor. The emphasis in the paper is on when Ω is not simply connected, in which case the MHD system is degenerate. We use Hodge-type decomposition theorems to obtain strong solutions locally in time or global for small enough initial data, and a linearization principle for the stability of a stationary solution.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Given two bounded smooth domains Ω_1 and Ω in three-dimensional space, with $\Omega_1 \Subset \Omega$, we consider the following problem.

The vessel Ω_1 is filled with an incompressible, electrically conducting fluid, and is surrounded by a dielectric or by vacuum, occupying the bounded domain $\Omega_2 = \Omega \setminus \Omega_1$. We have a magnetic and electric field in Ω and the external surface $S = \partial \Omega$ is an ideal conductor. We assign in Ω_1 an external hydrodynamic force density \mathbf{f} and a current density \mathbf{j} , and we assign at time t = 0 the initial velocity and magnetic field. We determine the motion of the fluid.

We will assume the quasi-stationary approximation, finite conductivity σ of the fluid and ignore the Hall effect. In this setting the equations of magnetohydrodynamics in Ω_1 have the form

$$\boldsymbol{v}_t - \boldsymbol{v} \Delta \boldsymbol{v} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} - \boldsymbol{\mu} (\boldsymbol{H} \cdot \nabla) \boldsymbol{H} + \nabla \left(\boldsymbol{p} + \boldsymbol{\mu} \frac{|\boldsymbol{H}|^2}{2} \right) = \boldsymbol{f},$$
(1)

$$\mu \boldsymbol{H}_{t} = -\operatorname{rot}\boldsymbol{E}, \quad \operatorname{rot}\boldsymbol{H} = \sigma(\boldsymbol{E} + \mu(\boldsymbol{v} \times \boldsymbol{H})) + \boldsymbol{j}$$
(2)

$$\operatorname{div} \boldsymbol{v} = 0, \quad \operatorname{div} \boldsymbol{H} = 0$$

where **v** and *p* are the velocity and pressure of the liquid, **H** and **E** are the magnetic and electric vector fields respectively, μ , $\nu > 0$ are the magnetic permeability and the viscosity of the fluid and $\sigma > 0$ is the electric permeability. For when the fluid and the dielectric (or vacuum) have different magnetic permeabilities, respectively μ_1 and μ_2 , we will set $\mu(x) \equiv \mu_1$ in Ω_1 and $\mu(x) \equiv \mu_2$ in Ω_2 Eliminating the electric field from (2) one obtains in Ω_1

$$\boldsymbol{H}_{t} + \eta \operatorname{rotrot}\boldsymbol{H} - \operatorname{rot}(\boldsymbol{v} \times \boldsymbol{H}) = \eta \operatorname{rot}\boldsymbol{j}, \quad \operatorname{div}\boldsymbol{H} = 0,$$
(4)

where $\eta = 1/\sigma \mu_1$ is the magnetic diffusivity of the fluid.

(3) velv

^{*} Corresponding author. Tel.: +39 3281271649.

E-mail addresses: mosconi@dmi.unict.it, mosconi@cibs.sns.it (S.J.N. Mosconi), solonnik@pdmi.ras.ru (V.A. Solonnikov).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.09.002