On best constants in Hardy inequalities with a remainder term

Salvatore Cuomo ${ }^{1}$, Adamaria Perrotta*
Dipartimento di Matematica ed applicazioni "R.Caccioppoli", Complesso Universitario M. S. Angelo, Via Cinthia, 80126 Napoli, Italy

ARTICLE INFO

Article history:

Received 19 March 2010
Accepted 21 May 2011
Communicated by Ravi Agarwal

MSC:

35J20
26D10
46E35

Keywords:

Hardy inequality
One-dimensional Calculus of Variations Best constants

A B S TRACT

Let Ω be a bounded open set of \mathbb{R}^{N} containing the origin. We compute the best value of the constant $C(\alpha,|\Omega|)$ in

$$
\int_{\Omega}|\nabla u|^{2} d x-\frac{(N-2)^{2}}{4} \int_{\Omega} \frac{u^{2}}{|x|^{2}} d x \geq C(\alpha,|\Omega|)\|u\|_{L\left(\frac{2 N}{N-\alpha}, 2\right)}^{2},
$$

with $\alpha<2$ and $u \in H_{0}^{1}(\Omega)$. Then we get the optimal value of $C(|\Omega|)$ in

$$
\int_{\Omega}|\nabla u|^{3} d x-\left(\frac{N-3}{3}\right)^{3} \int_{\Omega} \frac{u^{3}}{|x|^{3}} d x \geq C(|\Omega|)\|u\|_{L^{3}}^{3}
$$

where $u \in W_{0}^{1,3}(\Omega)$.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let $N>2$ and let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain containing the origin.
The well known Hardy-Sobolev inequality (see [1,2]) reads

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{p} d x \geq\left(\frac{N-p}{p}\right)^{p} \int_{\Omega} \frac{u^{p}}{|x|^{p}} d x, \quad \forall u \in W_{0}^{1, p}(\Omega) . \tag{1.1}
\end{equation*}
$$

This inequality and its various improvements are used in many contexts, as in the study of stability of solutions of semilinear elliptic and parabolic equations (see [3-5]), or in the analysis of the asymptotic behavior of the heat equation with singular potentials (see [6]).

The constant $C_{N, p}=\left(\frac{N-p}{p}\right)^{p}$ is the best one and there is no function $u \in W_{0}^{1, p}(\Omega)$ for which it is achieved. For this reason several authors have improved inequality (1.1) by adding a nonnegative correction term.

In case $p=2$ the first result is due to Brezis and Vazquez; in [3] they prove the so-called Hardy-Poincaré inequality

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{2} d x-\frac{(N-2)^{2}}{4} \int_{\Omega} \frac{u^{2}}{|x|^{2}} d x \geq \Lambda_{2}\left(\frac{\omega_{N}}{|\Omega|}\right)^{\frac{2}{N}}\|u\|_{L^{2}}^{2}, \quad \forall u \in H_{0}^{1}(\Omega) \tag{1.2}
\end{equation*}
$$

Here Λ_{2} denotes the first eigenvalue of the Laplace operator in the two dimensional unit disk, and ω_{N} and $|\Omega|$ are respectively the N-dimensional Lebesgue measure of the unit ball $B_{1}(0) \subseteq \mathbb{R}^{N}$ and of the set Ω. The value $\Lambda_{2}\left(\frac{\omega_{N}}{|\Omega|}\right)^{\frac{2}{N}}$ is optimal in the ball but it is not achieved in $H_{0}^{1}(\Omega)$.

[^0]
[^0]: * Corresponding author. Tel.: +39 081675703; fax: +39 081675636.

 E-mail addresses: salvatore.cuomo@unina.it (S. Cuomo), adamaria.perrotta@unina.it (A. Perrotta).
 1 Tel.: +39 081675624; fax: +39 081675636.

