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inR", n > 2. Asa corollary we obtain global existence of solutions to the 2D Euler equations
in the Triebel-Lizorkin-Lorentz space. For the proof, we establish the Beale-Kato-Majda

13\/{55(;5 type logarithmic inequality and commutator estimates in our spaces. The key methods of
76803 proof used are the Littlewood-Paley decomposition and the paradifferential calculus by
35830 J-M. Bony.
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1. Introduction and main results

In this paper, we consider the Euler equations for the inviscid incompressible fluid in R", n > 2,

v+ (- -Viv=-Vp, (xt)e€R"x(0,00),

divv =0, (x,t) € R" x (0, 00), (1.1)
v(x, 0) = vo(x), x e R,
where v = (v1, V2, ..., Vp), v = Vj(x, t),j =1, 2, ..., n,is the velocity of the fluid flows, p = p(x, t) is the scalar pressure,

and vy is the given initial velocity satisfying div vy = 0.

One of the outstanding open questions in mathematical fluid dynamics today is whether the incompressible three-
dimensional Euler equations develop a singularity in the vorticity field in a finite time. The interest in singularities comes
from many directions. Physically their formation may signify the onset of turbulence and may be a mechanism for energy
transfer to small scales. Numerically they require very special methods and are thus a challenge to computational fluid
dynamics. Finally, the question is of interest to mathematicians because of the question of global existence of solutions.

For the local-in-time existence and uniqueness of solutions for the Euler equations, there are many results. Given
vg € H™(R") for integer m > % + 1, Kato [1] proved local-in-time existence and uniqueness of a solution in the class
C ([0, T]; H™(R™)), where T = T(||vg|lgm). Kato and Ponce [2] extended this result to the fractional-order Sobolev space

WSP(R™") = (1 — A)’%LP(R”) fors > g 4+ 1, 1 < p < oo. Furthermore, Lichtenstein established local existence in the

Holder space C1'7 (R™), Chemin [3] gave another local existence proof in R". Moreover, a number of studies on the Euler
equations in Besov spaces B;‘r(R“) has been done by Vishik [4-6], Chae [7], Zhou [8,9], Zhou et al. [10].
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