Spectral properties of p-Laplacian problems with Neumann and mixed-type multi-point boundary conditions

Bryan P. Rynne*
Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom

A R TICLE INFO

Article history:

Received 18 May 2010
Accepted 8 October 2010

Keywords:

Second order
Ordinary differential equations
Multi-point boundary conditions

A B S T R A C T

We consider the boundary value problem consisting of the p-Laplacian equation

$$
\begin{equation*}
-\phi_{p}\left(u^{\prime}\right)^{\prime}=\lambda \phi_{p}(u), \quad \text { on }(-1,1) \tag{1}
\end{equation*}
$$

where $p>1, \phi_{p}(s):=|s|^{p-1} \operatorname{sgn} s$ for $s \in \mathbb{R}, \lambda \in \mathbb{R}$, together with the multi-point boundary conditions

$$
\begin{equation*}
\phi_{p}\left(u^{\prime}(\pm 1)\right)=\sum_{i=1}^{m^{ \pm}} \alpha_{i}^{ \pm} \phi_{p}\left(u^{\prime}\left(\eta_{i}^{ \pm}\right)\right), \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
u(\pm 1)=\sum_{i=1}^{m^{ \pm}} \alpha_{i}^{ \pm} u\left(\eta_{i}^{ \pm}\right) \tag{3}
\end{equation*}
$$

or a mixed pair of these conditions (with one condition holding at each of $x=-1$ and $x=1$). $\operatorname{In}(2),(3), m^{ \pm} \geqslant 1$ are integers, $\eta_{i}^{ \pm} \in(-1,1), 1 \leqslant i \leqslant m^{ \pm}$, and the coefficients $\alpha_{i}^{ \pm}$ satisfy

$$
\sum_{i=1}^{m^{ \pm}}\left|\alpha_{i}^{ \pm}\right|<1
$$

We term the conditions (2) and (3), respectively, Neumann-type and Dirichlet-type boundary conditions, since they reduce to the standard Neumann and Dirichlet boundary conditions when $\alpha^{ \pm}=0$.

Given a suitable pair of boundary conditions, a number λ is an eigenvalue of the corresponding boundary value problem if there exists a non-trivial solution u (an eigenfunction). The spectrum of the problem is the set of eigenvalues. In this paper we obtain various spectral properties of these eigenvalue problems. We then use these properties to prove Rabinowitz-type, global bifurcation theorems for related bifurcation problems, and to obtain nonresonance conditions (in terms of the eigenvalues) for the solvability of related inhomogeneous problems.
© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

For any number $p>1$, let $\phi_{p}(s):=|s|^{p-1} \operatorname{sgn} s, s \in \mathbb{R}$. For any integer $m \geqslant 1$, let \mathcal{A}^{m} denote the set of $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in$ \mathbb{R}^{m} satisfying

$$
\begin{equation*}
\sum_{i=1}^{m}\left|\alpha_{i}\right|<1 \tag{1.1}
\end{equation*}
$$

[^0]
[^0]: * Tel.: +44 131451 3243; fax: +44 1314513249 .

 E-mail address: bryan@ma.hw.ac.uk.

