Linearly perturbed polyhedral normal cone mappings and applications ${ }^{\text { }}$

Nguyen Thanh Qui
College of Information and Communication Technology, Can Tho University, 1 Ly Tu Trong, Can Tho, Viet Nam

ARTICLE INFO

Article history:

Received 5 August 2010
Accepted 18 October 2010

MSC:

49J53
49 J 52
49J40

Keywords:

Perturbed polyhedron
Normal cone mapping
Fréchet coderivative
Mordukhovich coderivative
Linear independence condition
Positive linear independence condition
Parametric affine variational inequality

Abstract

Under a mild regularity assumption, we derive an exact formula for the Fréchet coderivative and some estimates for the Mordukhovich coderivative of the normal cone mappings of perturbed polyhedra in reflexive Banach spaces. Our focus point is a positive linear independence condition, which is a relaxed form of the linear independence condition employed recently by Henrion et al. (2010) [1], and Nam (2010) [3]. The formulae obtained allow us to get new results on solution stability of affine variational inequalities under linear perturbations. Thus, our paper develops some aspects of the work of Henrion et al. (2010) [1] Nam (2010) [3] Qui (in press) [12] and Yao and Yen (2009) [6,7].

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Consider a real Banach space X with the dual denoted by X^{*}, a finite index set $T=\{1,2, \ldots, m\}$, a vector system $\left\{\mathfrak{a}_{i}^{*} \in X^{*} \mid i \in T\right\}$, and a polyhedral convex set (a polyhedron, for brevity)

$$
\begin{equation*}
\Theta(b)=\left\{x \in X \mid\left\langle\mathfrak{a}_{i}^{*}, x\right\rangle \leq b_{i} \text { for all } i \in T\right\} \tag{1.1}
\end{equation*}
$$

Here $b:=\left(b_{1}, \ldots, b_{m}\right) \in \mathbb{R}^{m}$ is a parameter. We interpret b_{1}, \ldots, b_{m} as right-hand side perturbations of the linear inequality system

$$
\begin{equation*}
\left\langle\mathfrak{a}_{i}^{*}, x\right\rangle \leq b_{i}, \quad i \in T \tag{1.2}
\end{equation*}
$$

The active index set corresponding to a pair (x, b), where $x \in \Theta(b)$, is defined by

$$
\begin{equation*}
I(x, b)=\left\{i \in T \mid\left\langle\mathfrak{a}_{i}^{*}, x\right\rangle=b_{i}\right\} . \tag{1.3}
\end{equation*}
$$

For a subset $I \subset T$, put $\bar{I}=T \backslash I$. By b_{I} (resp., $b_{\bar{I}}$) we denote the vector with the components b_{i} where $i \in I$ (resp., $i \in \bar{I}$). The two-variable multifunction $\mathcal{F}: X \times \mathbb{R}^{m} \rightrightarrows X^{*}$,

$$
\begin{equation*}
\mathcal{F}(x, b):=N(x ; \Theta(b)) \quad \forall(x, b) \in X \times \mathbb{R}^{m}, \tag{1.4}
\end{equation*}
$$

[^0]
[^0]: the research of the author was supported by the National Foundation for Science and Technology Development of Vietnam. The author thanks Prof. Nguyen Dong Yen and Dr. Bui Trong Kien for fruitful guidance, and the referee for useful suggestions.

 E-mail address: ntqui@cit.ctu.edu.vn.

