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a b s t r a c t

We consider the Cauchy problem of two types of Hartree equations with exchange–
correlation correction terms:

iut −∆u = Vk(u)u in R1+n, k = 1, 2,
u(0) = ϕ in Rn, n ≥ 1,

where

V1(u) = |x|−γ ∗ (λ1|u|2 + λ2|∇u|2), V2(u) = |x|−γ ∗ (λ||∇ |
δ u|2).

We establish the well-posedness of Cauchy problems and show the smoothing effect of
solutions for each 0 < γ < n and 0 ≤ δ ≤ 1.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider two types of Schrödinger equations:
iut +1u = Vk(u)u in R1+n,
u(0) = ϕ in Rn,

(1.1)

k = 1, 2, where
V1(u) = |x|−γ ∗ (λ1|u|2 + λ2|∇u|2), V2(u) = |x|−γ ∗ (λ||∇ |

δ u|2),

0 < γ < n, n ≥ 1, 0 ≤ δ ≤ 1 and λ1, λ2, λ are nonzero real numbers. Here |∇|
δ denotes (−∆)

δ
2 . These equations are called

as D-Hartree equations.
The equation with λ2 = 0 or δ = 0 and γ = 1 is called the Hartree one which shows the single-particle description of

Coulombic many body systems in three space dimensions. In the density functional theory a more effective description has
been studied for the system whose Hamiltonian H is defined by −∆ + Vext + VH + Vxc. Here we normalized the physical
quantity h̄,m by unity. Vext is the external potential, VH is the usual Hartree potential and Vxc is the exchange–correlation (xc)
potential. If we consider dynamics of the system without an external potential, that is Vext = 0 and let ψ = ψ(t, x) be the
wavefunction of a single particle, then heuristically the functionψ satisfies that iψt = Hψ , where VH = λ̃


R3

ρ(y)
|x−y| dy, ρ =

|ψ |
2 and Vxc is given by the formula

Vxc =

∫
R3

ρxc(x, y)
|x − y|

dy

✩ D-Hartree equations.
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