On Hartree equations with derivatives ${ }^{\text {* }}$

Yonggeun Cho ${ }^{\text {a,* }}$, Sanghyuk Lee ${ }^{\text {b }}$, Tohru Ozawa ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 561-756, Republic of Korea
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, Seoul National University, Seoul 151-747, Republic of Korea
${ }^{\text {c }}$ Department of Applied Physics, Waseda University, Tokyo 169-8555, Japan

ARTICLE INFO

Article history:

Received 28 April 2010
Accepted 5 November 2010

MSC:

35Q55
42B37

Keywords:

Hartree equations with derivatives
Well-posedness
Smoothing effect
Angular regularity

ABSTRACT

We consider the Cauchy problem of two types of Hartree equations with exchangecorrelation correction terms:

$$
\left\{\begin{array}{l}
\mathrm{i} u_{t}-\Delta u=V_{k}(u) u \text { in } \mathbb{R}^{1+n}, k=1,2, \\
u(0)=\varphi \text { in } \mathbb{R}^{n}, n \geq 1,
\end{array}\right.
$$

where

$$
V_{1}(u)=|x|^{-\gamma} *\left(\lambda_{1}|u|^{2}+\lambda_{2}|\nabla u|^{2}\right), \quad V_{2}(u)=|x|^{-\gamma} *\left(\left.\left.\lambda| | \nabla\right|^{\delta} u\right|^{2}\right) .
$$

We establish the well-posedness of Cauchy problems and show the smoothing effect of solutions for each $0<\gamma<n$ and $0 \leq \delta \leq 1$.
© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we consider two types of Schrödinger equations:

$$
\left\{\begin{array}{l}
\mathrm{i} u_{t}+\Delta u=V_{k}(u) u \quad \text { in } \mathbb{R}^{1+n} \tag{1.1}\\
u(0)=\varphi \text { in } \mathbb{R}^{n}
\end{array}\right.
$$

$k=1$, 2, where

$$
V_{1}(u)=|x|^{-\gamma} *\left(\lambda_{1}|u|^{2}+\lambda_{2}|\nabla u|^{2}\right), \quad V_{2}(u)=|x|^{-\gamma} *\left(\left.\left.\lambda| | \nabla\right|^{\delta} u\right|^{2}\right)
$$

$0<\gamma<n, n \geq 1,0 \leq \delta \leq 1$ and $\lambda_{1}, \lambda_{2}, \lambda$ are nonzero real numbers. Here $|\nabla|^{\delta}$ denotes $(-\Delta)^{\frac{\delta}{2}}$. These equations are called as D -Hartree equations.

The equation with $\lambda_{2}=0$ or $\delta=0$ and $\gamma=1$ is called the Hartree one which shows the single-particle description of Coulombic many body systems in three space dimensions. In the density functional theory a more effective description has been studied for the system whose Hamiltonian \mathscr{H} is defined by $-\Delta+V_{\mathrm{ext}}+V_{\mathrm{H}}+V_{\mathrm{xc}}$. Here we normalized the physical quantity \hbar, m by unity. $V_{\text {ext }}$ is the external potential, V_{H} is the usual Hartree potential and V_{xc} is the exchange-correlation (xc) potential. If we consider dynamics of the system without an external potential, that is $V_{\text {ext }}=0$ and let $\psi=\psi(t, x)$ be the wavefunction of a single particle, then heuristically the function ψ satisfies that $\mathrm{i} \psi_{t}=\mathscr{H} \psi$, where $V_{\mathrm{H}}=\tilde{\lambda} \int_{\mathbb{R}^{3}} \frac{\rho(y)}{|x-y|} \mathrm{d} y, \rho=$ $|\psi|^{2}$ and V_{xc} is given by the formula

$$
V_{\mathrm{xc}}=\int_{\mathbb{R}^{3}} \frac{\rho_{\mathrm{xc}}(x, y)}{|x-y|} \mathrm{d} y
$$

[^0]
[^0]: ${ }^{2}$ D-Hartree equations.

 * Corresponding author. Tel.: +82 63270 3376; fax: +82 632703363.

 E-mail addresses: changocho@jbnu.ac.kr (Y. Cho), shklee@snu.ac.kr (S. Lee), txozawa@waseda.jp (T. Ozawa).

