# Infinitely many solutions for diffusion equations without symmetry ${ }^{\text {* }}$ 

Jun Wang ${ }^{\text {a,b,* }}$, Junxiang Xu ${ }^{\text {b }}$, Fubao Zhang ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Mathematics, Jiangsu University, Zhenjiang, Jiangsu, 212013, China<br>${ }^{\text {b }}$ Department of Mathematics, Southeast University, Nanjing, Jiangsu, 210096, China

## A R T I C L E I N F O

## Article history:

Received 29 June 2009
Accepted 1 October 2010

## Keywords:

Unbounded Hamiltonian systems
Variational methods
(C) ${ }_{c}$-condition

## A B S T R A C T

We consider the following diffusion system:

$$
\left\{\begin{array}{l}
\partial_{t} u-\triangle_{x} u+b(t, x) \nabla_{x} u+V(x) u=H_{v}(t, x, u, v), \\
-\partial_{t} v-\triangle_{x} v+b(t, x) \nabla_{x} v+V(x) v=H_{u}(t, x, u, v)
\end{array} \quad \forall(t, x) \in \mathbb{R} \times \mathbb{R}^{N}\right.
$$

which is an unbounded Hamiltonian system in $L^{2}\left(\mathbb{R} \times \mathbb{R}^{N}, \mathbb{R}^{2 m}\right), z:=(u, v): \mathbb{R} \times \mathbb{R}^{N} \rightarrow$ $\mathbb{R}^{m} \times \mathbb{R}^{m}, b \in C\left(\mathbb{R} \times \mathbb{R}^{N}, \mathbb{R}^{N}\right), V \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$ and $H \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{N} \times \mathbb{R}^{2 m}, \mathbb{R}\right)$. Suppose that $H, b$ and $V$ depend periodically on $t$ and $x$, and that $H(t, x, z)$ is superquadratic in $z$ as $|z| \rightarrow \infty$. Without a symmetry assumption on $H$, we establish the existence of infinitely many geometrically distinct solutions via a variational approach.
© 2010 Elsevier Ltd. All rights reserved.

## 1. Introduction and main results

### 1.1. The problem

In this paper, we study the multiplicity of solutions for the following system:

$$
\left\{\begin{array}{l}
\partial_{t} u-\Delta_{x} u+b(t, x) \nabla_{x} u+V(x) u=H_{v}(t, x, u, v),  \tag{HS}\\
-\partial_{t} v-\Delta_{x} v+b(t, x) \nabla_{x} v+V(x) v=H_{u}(t, x, u, v)
\end{array} \quad \forall(t, x) \in \mathbb{R} \times \mathbb{R}^{N} .\right.
$$

Here $V \in C\left(\mathbb{R}^{N}, \mathbb{R}\right), b:=\left(b_{1}, \ldots, b_{N}\right) \in C\left(\mathbb{R} \times \mathbb{R}^{N}, \mathbb{R}^{N}\right)$ with the gauge condition $\operatorname{div} b(t, x):=\sum_{i=1}^{N} \partial_{x_{i}} b_{i}(t, x)=0, z=$ $(u, v): \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{m}$ and $H \in C^{1}\left(\mathbb{R} \times \mathbb{R}^{N} \times \mathbb{R}^{2 m}, \mathbb{R}\right)$. Such problems arise in the optimal control of systems governed by partial differential equations (see [1]) and they are related to Schrödinger equations (see [2]). If we let

$$
\mathcal{I}_{0}=\left(\begin{array}{ll}
0 & I  \tag{1.1}\\
I & 0
\end{array}\right), \quad \mathcal{G}=\left(\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right), \quad s:=-\Delta_{x}+V,
$$

and

$$
\begin{equation*}
A=g_{0} \delta+\mathscr{g} b \cdot \nabla_{x}, \tag{1.2}
\end{equation*}
$$

then $(H S)$ can be rewritten as

$$
\begin{equation*}
\mathcal{g} \frac{\mathrm{d}}{\mathrm{~d} t} z+A z=H_{z}(t, x, z) \tag{1.3}
\end{equation*}
$$

[^0]
[^0]:    This work was supported by the Scientific Research Foundation of Graduate School of Southeast University (YBJJ0928), the National Natural Science Foundation of China (11071038) and the Natural Science Foundation of Jiangsu Province (BK2010420).

    * Corresponding author at: Department of Mathematics, Southeast University, Nanjing, Jiangsu, 210096, China.

    E-mail addresses: wangjdn2006@21cn.com (J. Wang), xujun@seu.edu.cn (J.X. Xu), zhangfubao@seu.edu.cn (F.B. Zhang).

