Bubbles with prescribed mean curvature: The variational approach

Paolo Caldiroli ${ }^{\text {a }}$, Roberta Musina ${ }^{\mathrm{b}, *}$
${ }^{\text {a }}$ Dipartimento di Matematica, Università di Torino, via Carlo Alberto, 10 - 10123 Torino, Italy
${ }^{\mathrm{b}}$ Dipartimento di Matematica ed Informatica, Università di Udine, via delle Scienze, 206 - 33100 Udine, Italy

ARTICLE INFO

Article history:

Received 3 December 2010
Accepted 18 January 2011

MSC:

53A10 (49J10)
Keywords:
H-systems
Prescribed mean curvature equation Blow-up

Abstract

Let $H: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a C^{1} mapping such that $H(p) \rightarrow H_{\infty}>0$ as $|p| \rightarrow \infty$. We show that when H satisfies some global conditions then there exists an H-bubble, namely a sphere S in \mathbb{R}^{3} such that the mean curvature of S at any regular point $p \in S$ equals $H(p)$.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we make a contribution to the following problem, raised by Yau in [1]: "Let H be a real-valued function on \mathbb{R}^{3}. Find (reasonable) conditions on H to ensure that one can find a closed surface with prescribed genus in \mathbb{R}^{3} whose mean curvature is given by $H^{\prime \prime}$. In particular, we are interested in the existence of \mathbb{S}^{2}-type surfaces in \mathbb{R}^{3} with prescribed mean curvature H.

Spheres in \mathbb{R}^{3} with mean curvature H can be characterized as parametric surfaces, or more precisely as nonconstant solutions of the problem

$$
\left\{\begin{array}{l}
\Delta u=2 H(u) u_{x} \wedge u_{y} \quad \text { on } \mathbb{R}^{2} \tag{1.1}\\
\int_{\mathbb{R}^{2}}|\nabla u|^{2}<\infty .
\end{array}\right.
$$

If H satisfies suitable smoothness and growth assumptions (see [2-5]), then any weak solution to (1.1) is actually a classical solution. Moreover, it is conformal, and it parameterizes a closed surface S with area $\frac{1}{2} \int_{\mathbb{R}^{2}}|\nabla u|^{2}$. Furthermore, the surface S has mean curvature $H(p)$ at any point $p \in S$, with the exception of a finite number of singular points.

Problem (1.1) has also some relevance with regard to the Plateau problem for disc-type surfaces with prescribed mean curvature. We cite for instance [6-8] for a discussion of this feature.

Following [9], we will call an H-bubble any nonconstant solution of (1.1). We are interested in finding sufficient global conditions for the existence of H-bubbles when H approaches a positive constant at infinity, that is,

$$
H(p) \rightarrow H_{\infty} \quad \text { as }|p| \rightarrow \infty, \text { for some } H_{\infty} \in(0, \infty)
$$

If $H \equiv H_{\infty} \in(0, \infty)$ is constant, then spheres of radius H_{∞}^{-1} centered at any point in \mathbb{R}^{3} are the only H-bubbles (i.e., they admit parameterizations solving (1.1); see Lemma 0.1 in [10]).

[^0]
[^0]: * Corresponding author.

 E-mail addresses: paolo.caldiroli@unito.it (P. Caldiroli), musina@dimi.uniud.it, roberta.musina@uniud.it (R. Musina).

