Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Clarke coderivatives of efficient point multifunctions in parametric vector optimization*

Thai Doan Chuong

Department of Mathematics, Dong Thap University, 783 Pham Huu Lau Road, Cao Lanh City, Dong Thap Province, Viet Nam

ARTICLE INFO

Article history: Received 9 July 2009 Accepted 23 August 2010

MSC: 49K40 49J52 90C29 90C31

Keywords:

Parametric vector optimization Efficient point multifunction Clarke coderivative Clarke normal cone Sensitivity analysis

1. Introduction

This paper is motivated by sensitivity analysis in parametric vector optimization problems. We first give some notation and definitions.

Let $f : P \times X \to Y$ be a vector function, $C : P \Rightarrow X$ be a multifunction where P, X and Y are Banach spaces. Given a pointed (i.e., $K \cap (-K) = \{0\}$) closed convex cone $K \subset Y$, we consider the following *parametric vector optimization problem*

$$\min_{x} \{ f(p,x) \mid x \in C(p) \}$$

depending on the *parameter* $p \in P$. Here, x is a *decision variable* and the cone K induces a partial order \leq_K on Y, i.e.,

$$y \leq_{K} y' \Leftrightarrow y' - y \in K, \quad y, y' \in Y$$

(1.2)

(1.4)

(1.1)

The "min_{*K*}" in (1.1) is understood with respect to the ordering relation \leq_K from (1.2).

We say that $y \in A$ is an *efficient point* of a subset $A \subset Y$ with respect to K and write $y \in Min A$, if and only if $(y - K) \cap A = \{y\}$. If $A = \emptyset$, then we stipulate that $Min A = \emptyset$.

Let $F : P \Rightarrow Y$ be a multifunction given by

$$F(p) = (f \circ C)(p) := f(p, C(p)) = \{f(p, x) \mid x \in C(p)\}.$$
(1.3)

We put

 $\mathcal{F}(p) = \operatorname{Min} F(p), \quad p \in P$

and call $\mathcal{F} : P \Rightarrow Y$ the *efficient point multifunction* of (1.1).

ABSTRACT

The paper is devoted to the study of the Clarke/circatangent coderivatives of the efficient point multifunction of parametric vector optimization problems in Banach spaces. We provide inner/outer estimates for evaluating the Clarke/circatangent coderivative of this multifunction in a broad class of conventional vector optimization problems in the presence of geometrical, operator and (finite and infinite) functional constraints. Examples are given for analyzing and illustrating the obtained results.

© 2010 Elsevier Ltd. All rights reserved.

This work was supported by a research grant from the National Program in Basic Sciences (Vietnam) and a grant from the NAFOSTED (Vietnam). E-mail address: chuongthaidoan@yahoo.com.

 $^{0362\}text{-}546X/\$$ – see front matter C 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.08.042