Clarke coderivatives of efficient point multifunctions in parametric vector optimization ${ }^{\text {® }}$

Thai Doan Chuong

Department of Mathematics, Dong Thap University, 783 Pham Huu Lau Road, Cao Lanh City, Dong Thap Province, Viet Nam

A R TICLE INFO

Article history:

Received 9 July 2009
Accepted 23 August 2010

MSC:

49K40
49J52
90C29
90C31

Keywords:

Parametric vector optimization
Efficient point multifunction
Clarke coderivative
Clarke normal cone
Sensitivity analysis

Abstract

The paper is devoted to the study of the Clarke/circatangent coderivatives of the efficient point multifunction of parametric vector optimization problems in Banach spaces. We provide inner/outer estimates for evaluating the Clarke/circatangent coderivative of this multifunction in a broad class of conventional vector optimization problems in the presence of geometrical, operator and (finite and infinite) functional constraints. Examples are given for analyzing and illustrating the obtained results.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is motivated by sensitivity analysis in parametric vector optimization problems. We first give some notation and definitions.

Let $f: P \times X \rightarrow Y$ be a vector function, $C: P \rightrightarrows X$ be a multifunction where P, X and Y are Banach spaces. Given a pointed (i.e., $K \cap(-K)=\{0\}$) closed convex cone $K \subset Y$, we consider the following parametric vector optimization problem

$$
\begin{equation*}
\min _{K}\{f(p, x) \mid x \in C(p)\} \tag{1.1}
\end{equation*}
$$

depending on the parameter $p \in P$. Here, x is a decision variable and the cone K induces a partial order \preceq_{K} on Y, i.e.,

$$
\begin{equation*}
y \preceq_{K} y^{\prime} \Leftrightarrow y^{\prime}-y \in K, \quad y, y^{\prime} \in Y \tag{1.2}
\end{equation*}
$$

The " $\min _{K}$ " in (1.1) is understood with respect to the ordering relation \preceq_{K} from (1.2).
We say that $y \in A$ is an efficient point of a subset $A \subset Y$ with respect to K and write $y \in \operatorname{Min} A$, if and only if $(y-K)$ $\cap A=\{y\}$. If $A=\emptyset$, then we stipulate that $\operatorname{Min} A=\emptyset$.

Let $F: P \rightrightarrows Y$ be a multifunction given by

$$
\begin{equation*}
F(p)=(f \circ C)(p):=f(p, C(p))=\{f(p, x) \mid x \in C(p)\} \tag{1.3}
\end{equation*}
$$

We put

$$
\begin{equation*}
\mathcal{F}(p)=\operatorname{Min} F(p), \quad p \in P \tag{1.4}
\end{equation*}
$$

and call $\mathcal{F}: P \rightrightarrows Y$ the efficient point multifunction of (1.1).

[^0]
[^0]: This work was supported by a research grant from the National Program in Basic Sciences (Vietnam) and a grant from the NAFOSTED (Vietnam).
 E-mail address: chuongthaidoan@yahoo.com.

