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a b s t r a c t

Optimal control for a system consistent of the viscosity dependent Stokes equations
coupled with a transport equation for the viscosity is studied. Motivated by a lack of
sufficient regularity of the adjoint equations, artificial diffusion is introduced to the
transport equation. The asymptotic behavior of the regularized system is investigated.
Optimality conditions for the regularized optimal control problems are obtained and again
the asymptotic behavior is analyzed. The lack of uniqueness of solutions to the underlying
system is another source of difficulties for the problem under investigation.
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1. Introduction

The focus of thiswork is to establish an approach for optimal controlmulti-phase fluid flow.More specificallywe consider
the problem

min J(η,u) =
1
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‖η −η‖2

L2(Q ) +
α

2
‖Bu‖

2
L2(Q ), (1.1)

subject to
yt − div (η(∇y))+ ∇p = Bu,
div y = 0, y|∂Ω = 0, y|t=0 = y0,
ηt + y · ∇η = 0,
η|t=0 = η0.

(1.2)

Let us describe the various terms in this problem formulation. Here Ω is a bounded domain in R2 with smooth boundary,
time interval T > 0 is fixed and Q = (0, T ) × Ω . The spatio-temperally dependent vector field y presents the velocity of
the fluid, p its pressure, and η is the nonconstant viscosity of the fluid. Further y0 and η0 are the initial velocity and viscosity
respectively. The control variable is denoted by u, it may act on the subset Ω̃ ⊂ Ω . Control operator B is a bounded linear
operator from L2(L2(Ω̃)) to L2(Q ), which will be defined in a later section. The control problem consists in finding u such
that the corresponding state-control vector (y, η, p,u)minimizes J(η,u), where η̃ is given and fixed.
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