Existence, nonexistence and asymptotic behavior of boundary blow-up solutions to $p(x)$-Laplacian problems with singular coefficient ${ }^{*}$

Qihu Zhang

Department of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China

ARTICLE INFO

Article history:

Received 10 July 2010
Accepted 22 October 2010

MSC:

35D05
35J70
Keywords:
$p(x)$-Laplacian
Sub-solution
Super-solution
Singularity

A B S T R A C T

This paper investigates the problem

$$
\left\{\begin{array}{l}
-\Delta_{p(x)} u+\rho(x) f(x, u)=0 \quad \text { in } \Omega, \\
u(x) \rightarrow+\infty \quad \text { as } d(x, \partial \Omega) \rightarrow 0,
\end{array}\right.
$$

where $-\Delta_{p(x)} u=-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$ is called the $p(x)$-Laplacian, and $\rho(x)$ is a singular coefficient. The existence and nonexistence of boundary blow-up solutions is discussed, and the asymptotic behavior of boundary blow-up solutions is given. In particular, we do not assume radial symmetric conditions, and the pointwise different exact blow-up rate of solutions has been discussed.

Published by Elsevier Ltd

1. Introduction

The study of differential equations and variational problems with variable exponent growth conditions is a new and interesting topic. It arises from nonlinear elasticity theory, electro-rheological fluids, image processing, etc. (see [1-4]). Many results have been obtained on this kind of problem, for example [1-20]. On the existence of solutions for $p(x)$-Laplacian problems, we refer to $[6,9,13,14,19]$. In this paper, we consider the following problem

$$
\left\{\begin{array}{l}
-\Delta_{p(x)} u+\rho(x) f(x, u)=0 \text { in } \Omega, \tag{P}\\
u(x) \rightarrow+\infty \quad \text { as } d(x, \partial \Omega) \rightarrow 0,
\end{array}\right.
$$

where $-\Delta_{p(x)} u=-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right), \Omega \subset \mathbb{R}^{N}(N \geq 2)$ is a bounded domain with C^{2} boundary $\partial \Omega$. Our aim is to discuss the existence, nonexistence and pointwise different exact blow-up rate of solutions for problem (P). The operator $-\Delta_{p(x)} u=-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$ is called $p(x)$-Laplacian. Especially, if $p(x) \equiv p$ (a constant), (P) is the well known p Laplacian problem.

Throughout the paper, we assume that $p(x), \rho(x)$ and $f(x, u)$ satisfy
$\left(\mathrm{H}_{1}\right) p(\cdot) \in C^{2}(\bar{\Omega})$ and satisfies

$$
1<p^{-} \leq p^{+}<N, \quad \text { where } p^{-}=\inf _{\Omega} p(x), p^{+}=\sup _{\Omega} p(x)
$$

[^0]
[^0]: * Foundation item: Partly supported by the National Science Foundation of China (10701066 \& 10926075 \& 10971087) and China Postdoctoral Science Foundation funded project (120090460969) and the Natural Science Foundation of Henan Education Committee (2008-755-65). E-mail address: zhangqh1999@yahoo.com.cn.

