Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Existence, nonexistence and asymptotic behavior of boundary blow-up solutions to p(x)-Laplacian problems with singular coefficient^{*}

Qihu Zhang

Department of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China

ARTICLE INFO

Article history: Received 10 July 2010 Accepted 22 October 2010

MSC: 35D05 35J70

Keywords: p(x)-Laplacian Sub-solution Super-solution Singularity

1. Introduction

ABSTRACT

This paper investigates the problem

 $\begin{cases} -\Delta_{p(x)}u + \rho(x)f(x, u) = 0 & \text{in } \Omega, \\ u(x) \to +\infty & \text{as } d(x, \partial\Omega) \to 0, \end{cases}$

where $-\Delta_{p(x)}u = -div(|\nabla u|^{p(x)-2} \nabla u)$ is called the p(x)-Laplacian, and $\rho(x)$ is a singular coefficient. The existence and nonexistence of boundary blow-up solutions is discussed, and the asymptotic behavior of boundary blow-up solutions is given. In particular, we do not assume radial symmetric conditions, and the pointwise different exact blow-up rate of solutions has been discussed.

Published by Elsevier Ltd

The study of differential equations and variational problems with variable exponent growth conditions is a new and interesting topic. It arises from nonlinear elasticity theory, electro-rheological fluids, image processing, etc. (see [1–4]). Many results have been obtained on this kind of problem, for example [1–20]. On the existence of solutions for p(x)-Laplacian problems, we refer to [6,9,13,14,19]. In this paper, we consider the following problem

(P) $\begin{cases} -\Delta_{p(x)}u + \rho(x)f(x, u) = 0 & \text{in }\Omega, \\ u(x) \to +\infty & \text{as } d(x, \partial\Omega) \to 0, \end{cases}$

where $-\Delta_{p(x)}u = -\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)$, $\Omega \subset \mathbb{R}^N$ ($N \ge 2$) is a bounded domain with C^2 boundary $\partial \Omega$. Our aim is to discuss the existence, nonexistence and pointwise different exact blow-up rate of solutions for problem (P). The operator $-\Delta_{p(x)}u = -\operatorname{div}(|\nabla u|^{p(x)-2}\nabla u)$ is called p(x)-Laplacian. Especially, if $p(x) \equiv p$ (a constant), (P) is the well known *p*-Laplacian problem.

Throughout the paper, we assume that p(x), $\rho(x)$ and f(x, u) satisfy

(H₁) $p(\cdot) \in C^2(\overline{\Omega})$ and satisfies

$$1 < p^- \le p^+ < N$$
, where $p^- = \inf_{\Omega} p(x)$, $p^+ = \sup_{\Omega} p(x)$.

E-mail address: zhangqh1999@yahoo.com.cn.

^{*} Foundation item: Partly supported by the National Science Foundation of China (10701066 & 10926075 & 10971087) and China Postdoctoral Science Foundation funded project (120090460969) and the Natural Science Foundation of Henan Education Committee (2008-755-65).