Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Yu Tian^{a,*}, Weigao Ge^b

^a School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, PR China
^b Department of Applied Mathematics, Beijing Institute of Technology, Beijing 100081, PR China

ARTICLE INFO

Article history: Received 8 February 2011 Accepted 30 June 2011 Communicated by Ravi Agarwal

MSC: 34B15 35A15

Keywords: Multiple solutions Sturm–Liouville boundary value problem Critical point Lower and upper solutions Variational methods

1. Introduction

ABSTRACT

In this paper, we prove the existence of multiple solutions for second order Sturm–Liouville boundary value problem

 $\begin{cases} -Lu = f(x, u), & x \in [0, 1] \\ R_1(u) = 0, & R_2(u) = 0, \end{cases}$

where Lu = (p(x)u')' - q(x)u is a Sturm–Liouville operator, $R_1(u) = \alpha u'(0) - \beta u(0)$, $R_2(u) = \gamma u'(1) + \sigma u(1)$. The technical approach is fully based on lower and upper solutions and variational methods. The interesting point is that the existence of four solutions and seven solutions is given.

© 2011 Elsevier Ltd. All rights reserved.

In recent years, there have been many papers studying the existence of solutions for boundary value problems, please refer to [1–8]. Agarwal et al. [9], Anuradha et al. [10], Erbe and Wong [11], Ge and Ren [12], Sun and Zhang [13], Zhang and Sun [14] have studied positive solutions of Sturm–Liouville boundary value problem by using fixed point theorem. Mao and Zhang [15] studied the existence of solutions for Kirchhoff type problems by using minimax methods and invariant sets of descending flow. Zhang and Perera [16] obtained the existence of positive, negative and sign–changing solutions of a class of nonlocal quasilinear elliptic boundary value problems using variational methods and invariant sets of descending flow. In papers [17,18], the existence of positive, negative and sign–changing solutions for asymptotically linear three-point boundary value problems was studied by using the topological degree theory and the fixed point index theory when the nonlinear term *f* is continuous and strictly increasing. In paper [39], Han and Li studied the existence of solutions for fourth order boundary value problem by using the critical point theory and the supersolution and subsolution method. Bonanno and Riccobono [4], Bonanno and Molica Bisci [19], Ricceri [20,21], Averna and Bonanno [22], Tian and Ge [23–26] studied positive solutions and multiple solutions for boundary value problems by using variational methods.

In papers [13,27], Sun and Zhang studied Sturm-Liouville boundary value problem

 $\begin{cases} -(L\varphi)(x) = h(x)f(\varphi(x)), & 0 < x < 1, \\ R_1(\varphi) = \alpha_1\varphi(0) + \beta_1\varphi'(0) = 0, \\ R_2(\varphi) = \alpha_2\varphi(1) + \beta_2\varphi'(1) = 0, \end{cases}$

Corresponding author.

E-mail address: tianyu2992@163.com (Y. Tian).

^{*} Project 11001028 supported by the National Science Foundation for Young Scholars; Project BUPT2009RC0704 supported by the Chinese Universities Scientific Fund. Project 11071014 supported by the National Science Foundation of PR China.

 $^{0362\}text{-}546X/\$$ – see front matter S 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2011.06.053